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Chapter 1

Preliminaries

“All models are approximations. Essentially, all models are wrong, but some are useful.
However, the approximate nature of the model must always be born in mind.” — George
BOX (famous statistician)

1.1 Preface

“A chemist who is not a physicist is nothing at all.” — Robert Bunsen who, besides being
famous for his Bunsen burner, helped to pioneer the use of physical methods, notably
spectroscopy, as tools for chemistry

This is a workbook for learning density-functional theory (DFT). It is aimed at chemical physi-
cists/physical chemists. Once upon a time there was a difference between being a chemical physicist
and being a physical chemist. At that time, physical chemistry consisted of thermodynamics, kinet-
ics, and various aspects of electrochemistry. While mathematical, the mathematics needed was not as
sophisticated as that needed to do quantum mechanics. So the development of quantum mechanics
as a tool for investigating chemistry was done in physics departments by chemical physicists. Those
days are now in the distant past as quantum mechanics has been taught in chemistry departments
since at least the 1970s. The blurring of the border between physics and chemistry continues now at
the nano-interface between theoretical solid-state physics and quantum chemistry as physicists look
at smaller and smaller structures and chemists look at larger and larger structures. Truly the two
terms chemical physicist and physical chemist have become synonymous in recent years!

DFT is a quantum chemical theory which tries to do as much possible with the charge density,
rather than with wave functions. This means that much hard work has been and is being done
in the building of density-functionals (DFAs for “density-functional approximations”) so that the
actual calculations can be kept as simple as possible. Nevertheless it is a mistake to use DFT to
study molecular systems without first becoming at least a little familiar with its formalism and
the differences between how DFT should work in principle and how DFAs work in practice. This
workbook has as its primary objective to help you fill in this gap between principle and practice.
While this workbook does contain a fair amount of theory, the reader will want to supplement this
workbook with a basic courses on quantum chemistry and DFT. Indeed, this workbook is really
aimed at understanding via practical calculations using the deMon2k program. The choice of this
program comes from the author’s own experience with the code and from its ready availability. Most
of what is learned with deMon2k is just as relevant to using other quantum chemistry programs
that do DFT.
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6 CHAPTER 1. PRELIMINARIES

Cameroon flag Dr. Anne ETINDELE Abraham PONRA

Figure 1.1: Our collaborators from Cameroon.

deMon2k [1] is an efficient quantum chemistry program which (I feel) should be better known,
perhaps especially in the Developing Countries. The only real obstacle to the wider dissemination
of deMon2k is primarily one of information. My hope is that workbooks such as this one may help
to fill the information void. Ultimately I would like this to be a small workbook that could be given
to a new student for learning how to do basic electronic structure programs through the use of the
deMon2k program. The main advantage of the deMon2k program for the student is that it is
free. The main advantage for the deMon developers is that we can expand our user base and develop
the program to better meet the needs of that user base.

In the short term, this workbook is intended to help Abraham PONRA who is a student of Anne
ETINDELE in Cameroon to get started on his PhD project with deMon2k (Fig. 1.1). My plan
is that each chapter should be an exercise aimed at learning some particular point and that these
points should lead to calculations directly related to Abraham’s project. Somewhat unexpectedly
Lesson 6 developed into publishable work comparing density functionals [2]. This is a nice example
of how teaching and research can go hand-in-hand and of how good ideas do not always require huge
amounts of computing power.

At a more personal level, this is also an excuse for me to take some time to get to know some
of the more recent innovations in deMon2k. There is no better way to learn something than by
teaching it! Not only have I have been enjoying writing the lessons but I have also been enjoying
doing them. I suggest that the student may have as much to learn from studying my answers as they
had from trying the exercises in the first place.

1.2 Installation

deMon2k should run under most Unix operating systems. If you do not have a computer running
Unix, it is possible to run Unix on top of Windows on a PC or on top of the Apple operating
system. Appendix A explains how Nabila Oozeer installed Unix on her Mac notebook without
removing the Apple operating system.

Let us assume that you have succeeded in finding or creating a Unix environment. Let us see
how you can install deMon2k on your machine by looking at how I installed it on my machine.
Specifically I installed a binary version on my portable computer which runs CentOS Linux.
Installation involved several steps:

1. Going to http://www.demon-software.com/public html/download/binary/download.html?
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2. Filling in the form:

3. Creating a suitable directory for unpacking:

/home/mcasida/ENGINEERING/workbook/deMon->ls

deMon2k.5.0.x86_linux.tgz

4. Changing to that directory and unpacking it:

> cd /home/mcasida/ENGINEERING/workbook/deMon

> gunzip deMon2k.5.0.x86_linux.tgz

> ls

deMon2k.5.0.x86_linux.tar

>tar xvf deMon2k.5.0.x86_linux.tar

AUXIS

BASIS

binary

ECPS

FFDS

MCPS

> ls

AUXIS BASIS binary deMon2k.5.0.x86_linux.tar ECPS FFDS MCPS

The executable is the file called binary. There are also several other files: BASIS contains a
library of orbital basis sets, AUXIS contains a library of auxiliary basis sets for fitting the charge
density and exchange correlation (xc) terms, ECPS and MCPS contain effective core potentials
and model core potentials (two very similar concepts) respectively, and FFDS contains force
field parameters for molecular modeling.
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5. Creating a simple input file deMon.inp containing:

TITLE O2 (Basis: GEN-A3*/6-311++G**)

MULTI 3

#

VXCTYPE VWN

#

PRINT MOS

VISUALIZATION MOLDEN FULL

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN ANGSTROM

O 0.000000 0.000000 0.603500

O 0.000000 0.000000 -0.603500

This is a single point calculation for the O2 molecule in its triplet ground state using the LDA.

6. Run the program directly in the directory with the binary:

> ./binary < deMon.inp >& deMon.out

> ls

AUXIS binary deMon.inp deMon.mol deMon.out ECPS MCPS

BASIS deMon2k.5.0.x86_linux.tar deMon.mem deMon.new deMon.rst FFDS

> vi deMon.out

The program ran correctly, creating several additional files, including the main output in
deMon.out, a restart file deMon.rst, one used for molecular visualization deMon.mol, and
the files deMon.meme and deMon.new. The program seems to be working just fine.

1.3 Lesson 0: Running the Program

Right now you have a directory (which I will call the deMon root directory) which contains your
executable, BASIS directory, AUXIS directory, etc. For various reasons, you do not want to run in the
deMon root directory. Instead, it is convenient to create a shell program (which I call run.csh) to
run deMon2k for you and do any clean up you might want to do afterwards. This section provides
a simple example of how this is done.

Note that the ending run.csh indicates that this program is written in C shell (⁀csh). Other
options are possible, but I like C shell. My program is intended to be small and easily modifiable
so that, once you understand it, you can adjust it to your own purposes and start to build your own
shell programs.

My program may be run in any directory of your account. It will look for a deMon2k input file
named xxx.inp in the same directory where “xxx” can be pretty much anything. Since deMon2k
always reads input from a file called deMon.inp, the file xxx.inp will have to be copied to deMon.inp.
Also run.csh will have to copy the deMon2k executable and any essential directories to the present
directory. The job is then run. Once the job has finished, the output file deMon.out is renamed
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xxx.out (same “xxx” as for xxx.inp) and all the unimportant files are removed. In order to keep
things simple, run.csh runs deMon2k in foreground.

Here is the contents of run.csh which I have placed in the directory
/home/mcasida/ENGINEERING/workbook/examples.

#!/bin/csh

# The previous line indicates that this is a C-shell file

# -------------------------------------------------------

# Program to run deMon in the present working directory.

# To use: Create an input file with the name xxx.inp where

# xxx can be anything. Execute with

# /home/mcasida/ENGINEERING/workbook/examples/run.csh xxx

# The job runs interactively in foreground.

# -------------------------------------------------------

set xxx = $1

echo "Input file "$xxx.inp

set PWD = ‘pwd‘

echo "The present working directory is "$PWD

set deMon_root = /home/mcasida/ENGINEERING/workbook/deMon # location of deMon files

echo "Using directories and excecutables from "$deMon_root

#

# copy essential files to the present working directory

#

cp $deMon_root/BASIS $PWD # copy the BASIS file to the run directory

cp $deMon_root/AUXIS $PWD # copy the AUXIS file to the run directory

cp $deMon_root/binary $PWD/deMon.x # copy the executable to the run directory

cp $xxx.inp deMon.inp

#

# run deMon

#

./deMon.x

#

# clean up

\rm BASIS

\rm AUXIS

mv deMon.out $xxx.out

\rm deMon.*

# -------------

# End of file

# -------------

Note that comments begin with the “number sign” (#) except for the first line in run.csh which
tells my computer that this is a csh program. The program needs to be made executable:

> chmod ugo+x run.csh

Let us see how the program works. I have copied the input file from Sec. 1.2 to the directory
/home/mcasida/ENGINEERING/workbook/examples/Lesson0 as the file O2.inp. Here
is a transcript of my session:
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> ls

O2.inp

> cat O2.inp

TITLE O2 (Basis: GEN-A3*/6-311++G**)

MULTI 3

#

VXCTYPE VWN

#

PRINT MOS

VISUALIZATION MOLDEN FULL

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN ANGSTROM

O 0.000000 0.000000 0.603500

O 0.000000 0.000000 -0.603500

> /home/mcasida/ENGINEERING/workbook/examples/run.csh O2

Input file O2.inp

The present working directory is /home/mcasida/ENGINEERING/workbook/examples/Lesson0

Using directories and excecutables from /home/mcasida/ENGINEERING/workbook/deMon

> ls

O2.inp O2.out

In addition to the input file O2.inp, I now have my output file O2.out but nothing else. This is
enough to get us started.



Chapter 2

Hydrogen Atom Calculations: Basis Sets
and Functionals

Lessons are arranged, at least for now in this initial version, by order of complexity of the molecules
treated. It makes sense to begin with the hydrogen atom whose analytic solution is both well known
and usually taught in both chemistry and physics curricula.

2.1 Lesson 1: The Orbital Basis Set

The objective here is to gain some understanding of the orbital basis sets used in deMon2k via a
little theory followed by an exercise consisting of calculations on the hydrogen atom.

2.1.1 LCAO approximation

It is well-known that the many-body problem cannot be solved exactly and so approximations are
needed. However physicists (by which I generally mean solid-state physicists who are used to doing
periodic calculations on metals and semiconductors) and chemists (by which I generally mean physical
chemists/chemical physicists who are used to doing calculations on molecules) typically build their
approximations based upon different physical pictures. For a physicist, the first approximation is that
of an idealized metal where the wave functions of the conduction electrons are plane waves. These
plane waves are delocalized over physical (x, y, z) space but localized in momentum space and lend
themselves to Fourier transform methods. For a chemist, on the other hand, molecules are thought
of as made up of atoms which interact to make bonding molecular orbitals (MOs), nonbonding MOs,
and antibonding MOs. The simplest approximation is that each MO is a Linear Combination of
Atomic Orbitals (AOs.) Although this LCAO approximation is only a first approximation to more
accurate descriptions of the electronic structure of molecules, it is still at the heart of much of
chemical thinking. Each MO ψi is expanded in terms of AOs χµ as,

ψi(~r) =
∑

µ

χµ(~r)Cµ,i

(
ψ1(~r) ψ2(~r) · · ·ψn(~r)

)
=

(
χ1(~r) χ2(~r) · · ·χm(~r)

)








C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n
...

...
. . .

...
Cm,1 Cm,2 · · · Cm,n







, (2.1)
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Figure 2.1: Part of the solution to last year’s final exam in the first-year course (CHI 131) that
I teach. Notice how AOs with S > 0 come together to create MOs with lower energy than the
corresponding AOs (i.e., are bonding) while AOs with S < 0 come together to create MOs with
higher energy than the corresponding AOs (i.e., are antibonding).

where the Cµ,i are referred to as MO coefficients. Notice how Latin indices are used for MOs and
Greek indices are used for AOs. This is a very consistent practice throughout the Quantum Chemistry
literature. Also capital Latin and Greek letters (such as Ψ) are reserved for many-electron quantities
while small Latin and Greek letters (such as ψ) are reserved for 1-electron (e.g., MO) quantities, but
there are some exceptions as capital letters are frequently used for matrices for historical reasons.

Each AO is naturally enough centered on an atom (often referred to as a “center”). True AOs
on any given center are orthonormal (or, more exactly, may be chosen to be orthonormal),

Sµ,ν = 〈χµ|χν〉 =
∫

χ∗
µ(~r)χν(~r) d~r = δµ,ν =

{
1 if µ = ν
0 if µ 6= ν

. (2.2)

However AOs from different atoms are not orthonormal and chemists are used to visualizing how the
AOs interact:

Sµ,ν







> 0 ⇒ bonding
= 0 ⇒ nonbonding
< 0 ⇒ antibonding

(2.3)

This is adequate to describe the simple AO/MO correlation diagrams found in first-year University
chemistry courses (e.g., Fig. 2.1.)
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2.1.2 Dirac-Roothaan Representation

Sometimes it is useful to use a more compact representation. This is made possible using Dirac’s
bras and kets. The bras and kets are related to the wavefunctions by,

ψ(~r) = 〈~r|ψ〉
φ∗(~r) = 〈φ|~r〉 . (2.4)

Then,

〈φ|ψ〉 =

∫

φ∗(~r)ψ(~r) d~r

=

∫

〈φ|~r〉〈~r|ψ〉 d~r

= 〈φ|
(∫

|~r〉〈~r| d~r
)

|ψ〉 . (2.5)

Note how this implies the completeness relation,

1̂ =

∫

|~r〉〈~r| d~r . (2.6)

In bra-ket notation, Eq. (2.1) is written as,

|ψi〉 =
∑

µ

|χµ〉Cµ,i , (2.7)

or,
~ψ† = ~χ†C , (2.8)

where,

~ψ† =
(
|ψ1〉 |ψ2〉 · · · |ψn〉

)

~χ† =
(
|χ1〉 |χ2〉 · · · |χm〉

)

C =








C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n
...

...
. . .

...
Cm,1 Cm,2 · · · Cm,n







. (2.9)

Similarly,

~φ =








〈ψ1|
〈ψ2|
. . .

〈ψn|








~χ =








〈χ1|
〈χ2|
. . .

〈χm|







. (2.10)
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I call this combination of Dirac notation and matrix notation “Dirac-Roothaan notation” because
the first time I saw it was in an article by Roothaan. This allows us to write some things very
compactly:

S = ~χ~χ† ⇒ Overlap matrix

H = ~χĥ~χ† ⇒ Orbital Hamiltonian matrix

P̂ = ~χ†S−1~χ ⇒ Resolution-of-the-identity . (2.11)

Note that the resolution-of-the-indentity (RI) only gives the identity operator, 1̂, in the limit of a
complete basis set. Nevertheless, assuming that the RI projector is the identity operator provides a
quick way to find the matrix form of the orbital equation that can be found more rigorously from the
variational principle. This equation is solved in deMon2k and other quantum chemistry programs:

ĥ|ψi〉 = ǫi|ψi〉
~χĥP̂ |ψi〉 = ǫi~χ|ψi〉

~χĥ~χ†S−1~χ|ψi〉 = ǫi~χ|ψi〉
H ~Ci = ǫiS ~Ci , (2.12)

where,
~Ci = S−1~χ|ψi〉 , (2.13)

is the ith column of the matrix C of MO coefficients because,

|ψi〉 = ~χ† ~Ci

~χ|ψi〉 = ~χ~χ† ~Ci

~χ|ψi〉 = S ~Ci
~Ci = S−1~χ|ψi〉 . (2.14)

One nice thing about the Dirac-Roothaan representation is that it provides useful tools for dealing
with basis sets which are not orthonormal, which is almost always the case in quantum chemistry.

It is worth repeating that the matrix form of the orbital equation solved in most quantum chem-
istry program is,

H ~Ci = ǫiS ~Ci , (2.15)

which is a sort of generalized eigenvalue problem. It is often solved using Lödwin’s method which
involves taking the square root of the overlap matrix:

HS−1/2S+1/2 ~Ci = ǫiS
+1/2S+1/2 ~Ci

(
S−1/2HS−1/2

) (

S+1/2 ~Ci

)

= ǫi

(

S+1/2 ~Ci

)

H̃C̃i = ǫiC̃i , (2.16)

where objects indicated with a tilde are sometimes called the symmetrized quantities,

H̃ = S−1/2HS−1/2

C̃i = S+1/2 ~Ci . (2.17)

A final calculation is then needed to retrieve the true MO coefficients,

~Ci = S−1/2C̃i . (2.18)
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2.1.3 GTOs

The LCAO approximation is only a starting point for accurate approximations which use more
elaborate basis sets. There are many excellent reviews of the basis sets used in quantum chemistry
(e.g., Ref. [3, 4]). These should be studied. My goal here is only to give a minimal overview.

Although some programs (e.g., DMol [5]) actually start with real atomic orbitals obtained from
atomic calculations on many-electron atoms, most programs take a different approach.

True AOs look roughly like hydrogen atom orbitals which take the familiar form,

χn,l,m(~r) = Yl,m(θ, φ)Rn,l(r) , (2.19)

where the radial function is a polynomial times an exponential. For example,

R1s(r) = 2

(
Z

a0

)3/2

e−Zr/a0

R2s(r) =
1√
2

(
Z

a0

)3/2(

1− Zr

2a0

)

e−Zr/a0

R2p(r) =
1

2
√
6

(
Z

a0

)5/2

re−Zr/a0 , (2.20)

where a0 is the Bohr radius and Z is the atomic number of the 1-electron atom. As the nodes in the
radial wave function are due to the requirement that the higher energy orbitals be orthogonal to the
lower energy orbitals and as this orthogonalization emerges naturally in variational calculations, it
is enough to use Slater-type orbitals (STOs) of the form,

χn,l,m(~r) ∝ Yl,m(θ, φ)r
n−1e−ζr/a0 . (2.21)

In many-electron atoms, the real atomic number Z is replaced by an effective atomic number ζ
(Greek letter zeta) which may, for example, be determined by Slater’s rules [6]. The problem with
spherical-harmonic STOs in the form of Eq. (2.21) is that these STOs are complex valued which is
a problem both for visualization and because it increases computation times. However spherical-
harmonic orbitals may be made the real and imaginary parts if necessary,

Y0,0 =
1

2
√
π

Y1,0 =
1

2

√

3

π

z

r

ℜeY1,1 =
1

2

√

3

2π

x

r

ℑmY1,1 =
1

2

√

3

2π

y

r
. (2.22)

This allows the spherical STOs to be replaced by cartessian STOs of the form,

χlx,ly,lz(~r) ∝ xlxylyzlze−ζr/a0 . (2.23)

Here l = lx+ ly + lz is more or less the azimuthal quantum number except that certain combinations
actually lead to functions of lower azimuthal quantum number. For example, there is no dx2+y2+z2
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Figure 2.2: Illustration of the effects of using (a) a double ζ basis set and (b) a polarization function.

function because x2 + y2 + z2 = r2 is spherically symmetric, hence an s function. STOs are used in
some programs, such as ADF [7], electron repulsion integrals involving more than two centers are
difficult to evaluate using STOs.

Instead it is better to use Gaussian-type orbitals (GTOs) of either the spherical-harmonic or
cartessian type. These differ from STOs by the replacement exp(−ζr/a0) by exp(−αr2/a20) to make
primitive GTOs,

χlx,ly,lz(~r;α) ∝ xlxylyzlze−αr
2/a20 . (2.24)

Fixed linear combinations of primitive GTOs make contracted GTOs of the form,

χµ(~r) ∝ xlxylyzlz
∑

i

e−αir
2/a20di . (2.25)

Here the di are the contraction coefficients and the αi are the exponentials. deMon2k uses a GTO
basis set.

Contracted GTOs may resemble STOs as in the case of the STO-3G basis minimal basis set where
each STO is approximated by a linear combination of three primitive GTOs. Note that a minimal
basis set corresponds to the case where there is one orbital for each core and for each valence orbital
(whether the latter are occupied or not). This partly justifies the common practice of referring to
GTOs as AOs.

One criticism which is sometimes made of GTOs by physicists who are used to planewave codes
is that there is no single parameter (like the wave number cut-off) that can be used to control
the convergence of the basis set. It is possible to control the convergence of a GTO basis set
in a systematic way by using, for example, even-tempered Gaussians which are known to provide a
uniform coverage of the function space and by systematically enlarging the angular degree of freedom
by increasing the largest azimuthal quantum number l in the basis set. However this is rarely done
because chemists usually want the smallest basis set which is adequate for studying the molecular
system (or systems) of interest to them. So the usual strategy is to expand the minimal basis set in
two ways.

The first way is to double or triple (double ζ or triple ζ) the number of AOs (i.e., really GTOs)
so as to allow expansion or contraction of the AO by variational optimization of, for example, a
linear combination of a smaller and a larger GTO of the same type (Fig. 2.2a.) The second way is
to include polarization functions of higher angular momentum than in the minimal basis which may
be used to describe an angular deformation of an atom or polarization of a bond (Fig. 2.2b.) Clearly
these tight or diffuse or polarization functions are no longer atomic orbitals, but it is still common
practice to call them AOs.
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A convenient place to find GTO basis sets is at the Basis Set Exchange:
https://www.basissetexchange.org/. You can even download GTO basis sets specifically in de-
Mon2k format!

2.1.4 BASIS file

The deMon2k BASIS file is a library of orbital basis sets. For example, for the hydrogen atoms, the
file includes the following orbital basis sets:

1. O-HYDROGEN HYDROGEN H (41) (DZV) (DZV-LDA)

2. O-HYDROGEN HYDROGEN H (41/1) (DZVP) (DZVP-LDA) [8]

3. O-HYDROGEN HYDROGEN H (DZV-GGA)

4. O-HYDROGEN HYDROGEN H (DZVP-GGA) [9]

5. O-HYDROGEN HYDROGEN H (41/11*) (TZVP)

6. O-HYDROGEN HYDROGEN H (3) (STO-3G) [10]

7. O-HYDROGEN HYDROGEN H (6-31G**) [11, 12]

8. O-HYDROGEN HYDROGEN H (6-311G**) [13]

9. O-HYDROGEN HYDROGEN H (DEF2-TZVPP) [14]

10. O-HYDROGEN HYDROGEN H (3111/11) (EPR) (EPR-III) [15]

11. O-HYDROGEN HYDROGEN H (311/1) (IGLO-II) [16]

12. O-HYDROGEN HYDROGEN H (3111/11) (IGLO-III) [16]

13. O-HYDROGEN HYDROGEN H (LIC) [17]

14. O-HYDROGEN HYDROGEN H (SAD) [18]

15. O-HYDROGEN HYDROGEN H (41/1*) (TZVP-FIP1) [19]

16. O-HYDROGEN HYDROGEN H (41/1*/1+) (TZVP-FIP2) [19]

17. O-HYDROGEN HYDROGEN H (DZ-ANO) [20]

18. O-HYDROGEN HYDROGEN H (cc-pVTZ) [21]

19. O-HYDROGEN HYDROGEN H (AUG-CC-PVDZ) [22]

20. O-HYDROGEN HYDROGEN H (AUG-CC-PVTZ) [22]

21. O-HYDROGEN HYDROGEN H (AUG-CC-PVQZ) [22]

22. O-HYDROGEN HYDROGEN H (AUG-CC-PV5Z) [22]

23. O-HYDROGEN H (AUG-PCJ-0) [23]
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24. O-HYDROGEN H (AUG-PCJ-1) [23]

25. O-HYDROGEN H (AUG-PCJ-2) [23]

26. O-HYDROGEN H (AUG-PCJ-3) [23]

27. O-HYDROGEN H (AUG-PCJ-4) [23]

28. O-HYDROGEN HYDROGEN H (LANL2DZ) [24]

It is also possible to input your own basis set (possibly one downloaded from the Basis Set Ex-
change) via the standard deMon2k input file.

Let us take a look at the format of one of these basis sets to get an idea of what the numbers
mean:

O-HYDROGEN HYDROGEN H (SAD)

5

1 0 4

33.8650140000 0.0060680000

5.0947880000 0.0453160000

1.1587860000 0.2028460000

0.3258400000 0.5037090000

2 0 1

0.1027410000 1.0000000000

3 0 1

0.0324000000 1.0000000000

2 1 2

1.1588000000 0.1884400000

0.3258000000 0.8824200000

3 1 2

0.1027000000 0.1178000000

0.0324000000 0.0042000000

This is an example of a Sadlej field-induced polarisation basis which is specifically designed for
efficient calculation of molecular polarizabilities. The number “5” after the title tells us that this
basis set consists of 5 contracted GTOs. The next line “1 0 4” tells us the following lines describe
the first (“1”) s-type (l = 0) function which is a contraction of 4 primitive GTOs. The exponents
and contraction coefficients are:
1s

1. α1 = 33.8650140000, d1 = 0.0060680000

2. α2 = 5.0947880000, d2 = 0.0453160000

3. α3 = 1.1587860000, d3 = 0.2028460000

4. α4 = 0.3258400000, d4 = 0.5037090000

The line “2 0 1” announces the next basis function which is the second s-type function consisting of
a single primitive GTO:
1s′
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Figure 2.3: The exponents in the Sadlej basis set showing that they form a rough geometric series
of the form αn = α1 ∗ (Cn−1) where C = 0.25.

1. α1 = 0.1027410000, d1 = 1.0000000000

The line “3 0 1” announces the third basis function which is the third s-type function consisting of
a single primitive GTO:
1s′′

1. α1 = 0.0324000000, d1 = 1.0000000000

Figure 2.3 shows how the exponents form a rough geometric series. This is not an accident but
instead a property that has to be satisfied when GTOs provide a uniform coverage of function space
[25]. Continuing on to the next lines: The line “2 1 2” announces the first set of p-type functions
consisting of the contraction of two primitive GTOs:
2px, 2py, 2pz

1. α1 = 1.1588000000, d1 = 0.1884400000

2. α2 = 0.3258000000, d2 = 0.8824200000

This is followed by the line “3 1 2” which announces the second set of p-type functions which also
consists of the contraction of two primitive GTOs:
2p′x, 2p

′
y, 2p

′
z

1. α1 = 0.1027000000, d1 = 0.1178000000

2. α2 = 0.0324000000, d2 = 0.0042000000

The total size of the basis set is m = 3 s-type functions + 2 sets of 3 p-type functions = 9 AOs.

2.1.5 Exercise

Copy the following input file and run deMon2k:
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TITLE H (Basis: GEN-A3*/STO-3G)

MULTI 2

#

VXCTYPE VWN

#

PRINT MOS

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN ANGSTROM

H 0.000000 0.000000 0.000000

#

AUXIS (GEN-A3*)

BASIS (STO-3G)

For each basis set note down:

1. The size of the basis set (number of AOs)

2. The total energy in Ha (hartrees)

3. The spin α and spin β orbital energies

Discuss your results.

2.2 Lesson 2: Density Functionals

Lesson 1 showed that (at least within the limitations of the given grid and auxiliary basis set), a
(spin-unrestricted) calculation on the hydrogen atom leads to a total energy of −0.47972 Ha when
the LDA is used, rather than to the exact answer of −0.5 Ha that most of us have seen multiple times
in our courses. This happens because, although density-functional theory (DFT) is an exact formal
theory, practical calculations require the use of density-functional approximations (DFAs) which are
not exact.

I think it is very important to understand the difference between DFT and DFAs and why both
are necessary. Let us begin with the well-known joke about the spherical cow. From the Wikipedia
entry entitled “Spherical cow”:

“Milk production at a dairy farm was low, so the farmer wrote to the local university,
asking for help from academia. A multidisciplinary team of professors was assembled,
headed by a theoretical physicist, and two weeks of intensive on-site investigation took
place. The scholars then returned to the university, notebooks crammed with data, where
the task of writing the report was left to the team leader. Shortly thereafter the physicist
returned to the farm, saying to the farmer, ‘I have the solution, but it works only in the
case of spherical cows in a vacuum’.”

This joke illustrates the tendency of physicists to seek exact solutions to idealized problems. For us,
DFT is a sort of spherical cow where we can work out all sorts of exact results while DFAs represent
a herd of real cows.



2.2. LESSON 2: DENSITY FUNCTIONALS 21

However we are also masters of genetic manipulation in the sense that we need not be content
with only those real cows in our herd but we, as a community, may also invent new DFA cows. Which
brings us to another important point: What makes one DFA better than another DFA? In principle
it is how closely it fulfills the exact conditions laid down by DFT. DFT is the target that we may
never be able to hit but which gives direction and purpose to our design of DFAs:

Le but n’est pas toujours placé pour être atteint, mais pour servir de mire ou de direction
“The target is not always meant to be hit, but rather to show where we should aim.” —
Joseph Joubert (p. 221 of Receuil des pensées de M. Joubert by F.-R. De Chateaubriand,
1838)

In this lesson, we will take first look at one of the exact conditions that should be satisfied by
a density functional. This condition goes by a number of names, including that the exact density
functional should be free of any self-interaction error (SIE) [26], should show a particle-number
derivative discontinuity (PNDD) [27, 28], and should not have any delocalization error (DE) or
static correlation error (SCE) [29]. We then make a very brief survey of different types of functionals.
Finally the lesson focuses on finding the degree to which the DFAs available in deMon2k suffer from
or are free from SIE.

One final thing should really be said before we go any further. This is that

DFAs typically do worst for small symmetric systems but often do very well for larger
systems.

Thus the hydrogen atom is a worst case scenario. This is encouraging for those of us who see
DFT as a way to extend ab initio accuracy to larger systems. However, in recent years, difficulties
have also emerged for DFAs and larger systems, typically having to do with charge distributions in
semiconducting polymers and van der Waals interactions. Nevertheless DFT still proves amazing
useful for large systems, provided the DFAs used are first validated against experiment or reliable ab
initio calculations for similar properties of similar molecules. For now let us concentrate on smaller
systems where calculations are rapid and failures can be dramatic!

2.2.1 Brief Review of Kohn-Sham Theory

Let us first review the Kohn-Sham formulation of DFT [30]. The total energy expression is,

E =
∑

i

ni〈ψi|t̂+ v|ψi〉+ EH [ρ] + Exc[ρ] , (2.26)

where t̂ = −(1/2)∇2 is the kinetic energy operator, v is the external potential representing attraction
to the nuclei, and the ψi are the Kohn-Sham orbitals whose occupation numbers are the ni. The ψi
are assumed to be orthonormal in Kohn-Sham theory,

〈ψi|ψj〉 = δi,j . (2.27)

There are also two functionals in the energy expression (2.26). The first is what physicists often call
the Hartree energy but which chemists usually call the Coulomb term (and designate by J). I will
write it as,

EH [ρ] =
1

2

∫ ∫
ρ(1)ρ(2)

r1,2
d1d2 , (2.28)
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where the numbers “1” and “2” stand for the coordinates of electrons 1 and 2 respectively including
spin. It is a functional (i.e., a function of a function) of the charge density,

ρ(1) =
∑

i

ni|ψi(1)|2 . (2.29)

(Note that physicists often write this same quantity as n(1).) The exchange-correlation (xc) energy
functional Exc[ρ] is known exactly and can be expressed using the Levy-Lieb constrained variational
formalism [31, 32], but this is not practical for calculations. Hence Exc[ρ] is approximated in practice.

Minimizing the energy expression (2.26) subject to the orthonormality condition (2.27) may be
done using the Lagrange multiplier formalism:

0 =
δ

δψ∗
i (1)

[

E[ψi, ψ
∗
i ]−

∑

i

niǫi (〈ψi|ψi〉 − 1)

]

. (2.30)

The functional derivative δF [f ] of a functional F [f ] of a function f(1), if it exists, is defined by,

δF [f ] = F [f + δf ]− F [f ] =

∫
δF [f ]

δf(1)
δf(1) d1 , (2.31)

for an arbitary infinitessimally small variation δf . (See Ref. [33] for a detailed presentation of the
theory of functionals and functional derivatives.) Equation (2.30) becomes,

0 = ni
(
t̂+ v(1) + vH(1) + vxc(1)

)
ψi(1)− niǫiψi(1) , (2.32)

where the Hartree potential,

vH(1) = vH [ρ](1) =

∫
ρ(2)

r1,2
d2 , (2.33)

and the xc potential,

vxc(1) = vxc[ρ](1) =
δExc[ρ]

δρ(1)
. (2.34)

Equation (2.32) may be rewritten as,

ĥψi(1) = ǫiψi(1) , (2.35)

where,
ĥ = t̂+ v(1) + vH(1) + vxc(1) , (2.36)

is the Kohn-Sham (orbital) hamiltonian.
Note that,

δE[ψi, ψ
∗
i ]

δ (niψ∗
i (1))

= ĥψi(1) . (2.37)

This allows a rapid proof of Janak’s theorem [34]:

∂E

∂ni
=

∫
δE[ψi, ψ

∗]

δ (niψ∗
i (1))

∂ (niψ
∗
i (1))

∂ni
d1

=

∫ (

ĥψi(1)
)

ψ∗
i (1) d1

=

∫

ψ∗
i (1)ĥψi(1) d1

= 〈ψi|ĥ|ψi〉
= ǫi . (2.38)
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This provides a way of calculating the ionization potential IPi of a molecule M associated with
removal of an electron from orbital ψi, namely,

IPi = E(M+)− E(M)

= −
∫ 1

0

∂E

∂ni
d1

= −
∫ 1

0

ǫi(ni) d1

≈ −ǫi(ni = 1/2) . (2.39)

The last approximation (known as Slater’s transition orbital method) becomes exact when the ǫi(ni)
is a linear function of ni. In practice with most functionals it is roughly linear. This will be addressed
in more detail below.

2.2.2 Some Exact Conditions

DFT is sometimes criticized as lacking the property of systematic improvability that we have come to
expect from wave function methods. However this is not entirely correct as one may hope to improve
DFAs by systematically improving as many of the known conditions on the exact xc functional as
possible. We discuss only a few related exact conditions here. These are so intimately interrelated
that I tend to view these as one exact condition viewed from different points of view.

Highest Occupied Molecular Orbital (HOMO) Energy The asymptotic behavior of the
charge density at large distances (“large r”) from a molecule has been extensively studied (Refs. [35,
36] contain reviews) and is known to go as

ρ(~r) −→
r → ∞

const× e−2

√
2IPr , (2.40)

where IP is the ionization potential. As the the large r behavior of the density is dominated by the
HOMO, we conclude that the HOMO energy in exact Kohn-Sham theory must be equal to exactly
minus the IP. This is the

Kohn-Sham Koopmans’ theorem: ǫH = −IP, where H stands for the HOMO.

In practice, −ǫi + const ≈ IPi where the constant depends upon the functional (see, e.g., Ref. [37]).
In particular, electrons are typically underbound with the usual DFAs.

Self-Interaction Error We have seen that the Kohn-Sham Koopmans’ theorem does not hold for
LDA calculations on the hydrogen atom. In particular,

Self-interaction error (SIE): The xc potential fails to cancel the spurious Hartree repulsion
of an electron with itself in one-electron systems.

The SIE must also be present in many-electron systems but is difficult to define exactly. The most
famous attempt to correct the SIE is the Perdew-Zunger self-interaction correction (SIC) [26],

Exc[ρ] → Exc[ρ]−
occ∑

i

(EH [ρi] + Exc[ρi]) , (2.41)



24 CHAPTER 2. HYDROGEN ATOM CALCULATIONS: BASIS SETS AND FUNCTIONALS

where ρi(1) = |ψi(1)|2 and the sum is over occupied (spin) orbitals. The corresponding xc potential
has the SIC,

vxc[ρ](1) → vxc[ρ](1)−
occ∑

i

(vH [ρi](1) + vxc[ρi](1)) . (2.42)

The main difficulty with this SIC is that it is not invariant under a unitary transformation of the
occupied orbitals so that a proper implemention involves finding the unitary transformation which
minimizes the total energy. Unfortunately most implementations of the Perdew-Zunger SIC are
incorrect (including Perdew and Zunger’s) in the sense that this unitary transformation is not done.

Particle Number Derivative Discontinuity (PNDD) Janak’s theorem uses the concept of
fractional occupation number, but what does it mean to have a system with a fractional number of
electrons? An answer was proposed by Perdew, Parr, Levy, and Balduz [38] in terms of a weighted
ensemble consisting of a fraction fN = nH of molecules in their ground state with N electrons and a
fraction fN−1 = 1− nH of molecules in their ground state with N − 1 electrons,

E(nH) = nHEN(M) + (1− nH)EN−1(M
+) . (2.43)

Here nH is the occupation number of the highest-occupied molecular (spin) orbital (HOMO). Then

∂E(nH)

∂nH
= EN(M)−EN−1(M

+) = −IPH (2.44)

rigorously. Similarly we may consider adding electrons to the lowest unoccupied molecular (spin)
orbital to obtain

E(nL) = nLEN+1(M
−) + (1− nL)EN (M) . (2.45)

Then
∂E(nL)

∂nL
= EN+1(M

−)− EN(M) = −EAL , (2.46)

where EA stands for the electron affinity of the molecule. Equations (2.43) and (2.45) are exact
in this theory. They also tell us that the energy is piecewise linear in the number of electrons and
therefore that the orbital energy derivative in Janak’s theorem does not exist for an integer number
of electrons.

Particle Number Derivative Discontinuity:

∂E

∂n
=







−IP ; N − δ
∄ ; N

−EA ; N + δ
. (2.47)

This is the famous PNDD (see also the articles by Perdew and Levy [27] and by Sham and Schlüter
[28]). As almost all practical DFAs are continuously differentiable, the best we can expect is

ǫH =
∂E

∂nH
≈ −IP + EA

2
. (2.48)

For the hydrogen atom, IP = 0.5 Ha and EA = 0.0277161 Ha [39], so we expect that ǫ1s ≈ −0.2639 Ha.
This compares well with the LDA value of -0.269 Ha found in Lesson 1.

Cohen, Mori-Sánchez, and Yang published a very nice paper Science in 2008 [29] proposing that
the failure of the total energy to be piece-wise linear when a fraction of an electron (DE) or a fraction
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of spin (SCE) is transferred from one atom to another could be used to measure the error in density
functionals and illustrated it with the examples of the dissociation of H+

2 , H2, and aqueous solvation
of Cl−. These examples bring home the importance of what has already been explained above and
are proposed as a guide for designing better functionals.

The only way to explain the nondifferentiability of the energy with respect to particle number
is to assume a sudden jump in the xc potential when a new orbital begins to be populated. This
jump must be nearly constant over all space as an infinitessimal population of a new orbital can only
result in an infinitessimal change in the charge density and hence of the orbitals. The exception is
asymptotically at large r when the density is going to zero. This asymptotic behavior depends only
on the HOMO and so it changes in a discontinuous manner whenever a new orbital is populated even
infinitessimally, providing a physical explanation of why the xc potential must have a PNDD.

Krieger-Li-Iafrate (KLI) Model The Perdew-Zunger SIC is not the right way to correct the
SIE because it does not treat the PNDD correctly. Instead insight may be obtained from the KLI
approximation to the optimized effective potential (OEP). The OEP is the answer to the question,

“What is the local potential vx whose orbitals minimize the Hartree-Fock energy expres-
sion?”

Alternatively the OEP is the answer to the question,

“What is the local potential vx for a system whose linear response to the perturbation
Σ̂x − vx is zero?”

Here Σ̂x is the Hartree-Fock exchange potential (often denoted by −K̂ by chemists). An equation
for finding the OEP was first proposed in 1953 a half-page article by Sharp and Horton [40] and
then solved by Talman and Shadwick [41]. (See Refs. [42, 36] for an extension that includes electron
correlation.)

Instead of looking at that solution we will look at an approximate solution which was suggested
in a footnote in the Sharp-Horton paper [40] and later found to be an excellent approximation to the
OEP by Krieger, Li, and Iafrate [43, 44]. The “derivation” given here is only heuristic but produces
the KLI approximation in a way that it meant to provide more of a feeling for how it works than
might a more rigorous approach. We assume that the exchange-only Kohn-Sham orbitals satisfying,

(

ĥH [ρ] + vx

)

ψi = ǫKSi ψi , (2.49)

are on average the same as the Hartree-Fock orbitals satisfying,

(

ĥH [ρ] + Σ̂x

)

ψi = ǫHFi ψi . (2.50)

Among other things, “on average” means that we may treat the density ρ and hence the Hartree
orbital Hamiltonian ĥ[ρ] as the same. Taking the difference of Eqs. (2.49) and (2.50) gives,

(

vx(1)− Σ̂x

)

ψi(1) =
(
ǫKSi − ǫHFi

)
ψi(1) . (2.51)

As Eq. (2.51) is only supposed to be correct “on average,” left multiply by niψ
∗
i (1) and sum to get,

vx(1)ρ(1)−
∑

i

niψ
∗
i (1)Σ̂xψi(1) =

∑

i

ni
(
ǫKSi − ǫHFi

)
|ψi(1)|2 , (2.52)
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or
vx(1) = vSx (1) + DDC(1) , (2.53)

where

vSx (1) =

∑

i niψ
∗
i (1)Σ̂xψi(1)

ρ(1)
(2.54)

is Slater’s potential [45] and

DDC(1) =

∑

i ni
(
ǫKSi − ǫHFi

)
|ψi(1)|2

ρ(1)
(2.55)

is the derivative discontinuity correction (DDC). The LDA is a first approximation to Slater’s po-
tential. The DDC is in principle a nonconstant function but it is roughly constant because, to a
first approximation, ǫKSi and ǫHFi differ mainly by an additive constant [37]. Setting ǫKSH = ǫHFH
makes this additive constant very nearly zero and assures the correct vx → 0 behavior as r → ∞
[46, 47]. Here “H” stands for the HOMO. Unexpectedly OEP orbital energies seem to provide a
better approximation than HF orbital energies to experimental IPs [47]. Equation (2.53) emphasizes
that most DFAs behave like the Slater potential while the exact xc potential has a DDC which causes
a sudden jump everytime a new orbital is even partly filled.

It should be mentioned that the KLI approximation (2.53) is not invariant to a unitary transfor-
mation of the occupied orbitals. However this may be fixed by a slight variation in the derivation of
equation to give,

vx(1) = vSx (1) +

∑

i,j niψi(1)〈ψi|vx − Σ̂x|ψj〉ψ∗
j (1)

ρ(1)
. (2.56)

This goes by several names including localized Hartree-Fock [48], the common energy denominator
approximation (CEDA) [49], and the effective local potential (ELP) [50]. It has the added advantage
of having better numerical stability than does a direct solution of the OEP equation.

2.2.3 Brief Review of Functionals

DFAs sometimes seem like an incomprehensible zoo of miscellenous acronyms. However John Perdew
took a lead from the Bible story of Jacob who fell asleep in the desert and dreamed of a ladder between
heaven and earth with angles ascending and descending. In particular, Perdew imagined a ladder of
DFAs (Fig. 2.4) where each rung of the ladder represents the inclusion of a new variable that may
be used to build DFAs [51, 52]. This might make it seem to provide a systematic way to improve
DFAs, but all that is really guaranteed is that DFAs on higher rungs of the ladder will require greater
computational resources. Nevertheless there is a tendency for functionals from higher rungs of the
ladder to be more accurate than those from lower rungs of the ladder (see, e.g., Ref. [53]). Let us
examine the rungs one by one with comments on what is currently available in deMon2k.

Hartree

We have not even reached the first rung of the ladder! Hartree calculations may be carried out with
deMon2k using the keyword,

NONE No exchange-correlation functional is used.

This is primarily of theoretical interest.
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Figure 2.4: John Perdew’s vision of a Jacob’s ladder for DFAs. On the left of the ladder are the
new variables which may be used to make functionals once that rung is reached. On the right is
the name usually given to that level of approximation. In the middle is a user drawn as an angel
in the spherical approximation. It is important that the user be able to climb the ladder towards
more accurate calculations but also to be able to descend the ladder when less resource intensive
calculations are adequate and needed for particular problems.
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Local (Spin) Density Approximation (LDA)

“We do not expect an accurate description of chemical bonding.” — Kohn and Sham on
the LDA [30]

As the quote indicates, when Kohn and Sham first proposed the LDA in their seminal paper,
they did not expect it to work very well for molecules. In fact, molecular geometries are remarkably
good at the LDA level in many cases but bond energies are typically overestimated.

The LDA assumes that the xc density exc(ρ(~r)) locally at each point ~r is the same as the xc
density in a homogeneous electron gas (HEG) of the same density ρ(~r). Neglecting spin we may
write this as,

ELDA
xc [ρ] =

∫

eHEGxc (ρ(~r))ρ(~r) d~r . (2.57)

Implementing the LDA requires a calculation of the xc-energy density for the HEG. Only the
exchange-part is known analytically. The correlation part and its spin-dependence need to be fit.
Here is a list of LDA fittings implemented in deMon2k:

VWN Dirac exchange with local VWN correlation [54, 55]

PZ81 Dirac exchange with local PZ81 correlation [54, 26]

PW92 Dirac exchange with local PW92 correlation [54, 56]

These should give very similar answers as they are all fits to accurate calculations of the properties
of the HEG. Warning: Gaussian’s VWN5 keyword is everyone else’s VWN.

An additional keyword

XALPHA Xα calculation. The default α value is 0.75. A user defined α value can be selected with
the X = <Real> option [45].

has been included. The Xα method is a very old exchange-only method due to Slater which involves
an empirical parameter chosen to fit Hartree-Fock energies. It is primarily only of historical interest.

Generalized Gradient Approximations (GGAs)

GGAs help to correct the overbinding problem of the LDA. Neglecting spin and focusing only on
exchange, a typical GGA has the form,

EGGA
xc [ρ] =

∫

ρ4/3(~r)F (x(~r)) d~r , (2.58)

where the enhancement factor F (x) depends upon the reduced gradient,

x(~r) =
|∇ρ(~r)|
ρ2/3(~r)

. (2.59)

Many people think that GGAs are most sensitive to the electron density near the nucleus where
the density varies the most quickly. However GGAs really depend upon the reduced gradient which
only becomes large in the outer regions of the electron density where bonding is important. One
consequence is that GGAs correct binding energies primarily by correcting atomic energies rather
than by correcting molecular energies. Here is a list of GGAs implemented in deMon2k:
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PW86 GGA exchange [57, 58] with P86 GGA correlation [59, 60].

BLYP GGA [61] exchange with LYP GGA correlation [62, 63, 64]

OLYP HC01 GGA exchange [65] with LYP GGA correlation [63, 61, 64]

PW91 GGA exchange and correlation [66]

PW91SSF PW91 with full spin scaling function [66]

PBE GGA exchange and correlation [67, 68].

PBESSF PBE with full spin scaling function [67, 68].

PBESOL PBE GGA exchange and correlation for solids [69, 70].

KT1/2/3 KT1-3 GGA exchange and correlation for NMR shieldings [71, 72].

SO11 GGA exchange and correlation [73].

N12 GGA exchange and correlation [74].

GAM GGA exchange and correlation [75].

CAP GGA exchange and correlation [76].

Meta GGAs (mGGAs)

The new functional dependence allowed with mGGAs is on the local kinetic energy density,

τ(~r) =
∑

p

npψp(~r)∇2ψp(~r) . (2.60)

Note that there is some indication that this local kinetic energy density contains comparable infor-
mation to the Laplacian of the charge density ∇2ρ(~r) [77].

VS98 meta-GGA exchange and correlation [78, 79].

PKZB meta-GGA exchange and correlation [80, 81].

TPSS meta-GGA exchange and correlation [82, 83].

M06L meta-GGA exchange and correlation [84].

M11L meta-GGA exchange and correlation [85].

MN12 meta-GGA exchange and correlation [86].
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Hybrid Functionals

“Obituary: Density-Functional Theory (1927-1993)”
— Peter Gill announcing the murder of pure DFT by hybrid functionals [87]

Hybrid functionals contain a portion of “Hartree-Fock” or “exact” exchange, where quotes have
been used because the Hartree-Fock exchange integral is calculated using the DFT orbitals. These
functionals were first proposed by Axel Becke [88] on the basis of adiabatic connection theory [89] in
order to get closer to the thermodynamic limit of “chemical accuracy” — namely 1 kcal/mol (4.184
kJ/mol). Becke’s original idea was to retain the local xc potential using an OEP-like procedure.
However, as this was never done, the orbital energies no longer have the same meaning as in the
exact Kohn-Sham DFT and must be reclassified as generalized Kohn-Sham DFT [90].

FOCK Variational fitted Fock exchange (i.e., Hartree-Fock) [91].

B3LYP GGA hybrid exchange and correlation [92, 93].

BH&H Becke half-and-half GGA hybrid exchange and correlation [88].

PBE0 GGA hybrid exchange and correlation [94, 95].

M062X meta-GGA hybrid exchange and correlation [96].

M06HF meta-GGA hybrid exchange and correlation [96].

M06 meta-GGA hybrid exchange and correlation [96].

Fifth Rung DFAs

These are functionals which also depend upon the virtual (i.e., unoccupied) orbitals. They typically
emerge in the form of DFT-based many-body perturbation theory (MBPT) and seem to depart from
the basic hope of DFT that the hard work is done in designing the DFA but the computations
are relatively simple. These belong to the most computationally-intensive rung of Jacob’s ladder.
Time-dependent DFT (TD-DFT) is often formulated in a way that it uses virtual orbitals and so it
could be considered to belong to the fifth rung of Jacob’s ladder. If we accept this, then it is the
only member of the fifth rung that you will find in the version of deMon2k that you are using here.
Nevertheless there are private versions of deMon2k that seem to building fifth rung approaches, so
let us review a little about them here.

One of the earliest approaches is based upon the fluctuation-dissipation theorem which makes
use of the generalized susceptibility,

χ(1, 2) =
δρ(1)

δvapp(2)
, (2.61)

where i = (i, ti). This is available from TD-DFT. It may be used to calculate the correlation energy
via the fluctuation-dissipation theorem,

Ecorr =
1

2

∫ 1

0

dλ

∫
iχλ(1, 2)− χ0(1, 2)

r1,2
d1d2 . (2.62)

This is actually a very old result (see. e.g., Ref. [97] p. 152). The parameter λ is a prefactor
which “turns on” the electron repulsion in a sort of adiabatic connection between the noninteracting
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system with generalized susceptibility χ0 and the interacting system with generalized susceptibility
χ1. Reference [98] provides one example of a fifth-rung functional derived from this approach.

Another approach, still maintaining the MBPT flavor of the fifth rung, is based upon mixing
MP2 and DFT correlation to improve the correlation energy. These are the so-called double hybrids
of which one example may be found in Ref. [99].

Is There a Best DFA?

So what functionals are best? Many functionals have been developed over the years, not infrequently
with particular properties in mind. The result is such a zoo of functionals that it can be difficult for
even the expert to know which functional to choose. In practice, some seem to work better for some
molecules and some properties than do others. What is a user to do?

One approach is to go to a colleague and ask them. Or you can go to the literature and see what
other people are using. Note that going to the literature or asking a colleague often both amount
to asking which is the most popular functional, not necessarily which is the best functional. Marcel
Swart runs a DFT Poll whose results you may find at

https://www.marcelswart.eu/dft-poll/index.html

This does not really tell you which is the best but it does tell you which functionals are the most
popular among those who responded to the poll. I do not know to what extent we may call this
science but it is amusing and it is useful to know what functionals are trending!

In the past decades, data bases have emerged containing reliable experimental or sometimes
reliable ab initio properties for increasingly large sets of molecules. (See, e.g., Ref. [53].) These
have been tremendously valuable for people who develop new functionals and it is tempting to judge
the quality of a functional by how well it fares with these data sets. Certainly this has a more solid
scientific basis than any popularity poll. However, you should be aware, that even the most extensive
of these data bases still represents a limited class of molecules and properties. If your problem is
outside of this well-studied zone, then you are on your own. This is why validating your functional
is still necessary.

Here is some old fashioned, but I think still important advice:

Always validate your choice of functional for the problem you want to study!
That is, research problems usually involve specific properties of specific molecules which
have (hopefully) not yet been studied (so that there is something new to learn!) Make
sure that you have the best functional for your problem by choosing several functionals
and applying them to a well-studied molecule with similar properties to the ones that
interest you. In the best scenario, all the functionals will give similar results and so
you can be reasonably confident that the choice of functional is not a critical issue for
your problem. But it often happens that there are striking differences and that some
functionals are better for making predictions for the class of molecules and properties
which interest you.

2.2.4 Exercise

Copy the following input file and run deMon2k for VSCTYPE VWN and for the other functionals
mentioned above:
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TITLE H functionals

MULTI 2

#

VXCTYPE VWN

#

PRINT MOS

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN ANGSTROM

H 0.000000 0.000000 0.000000

#

AUXIS (GEN-A3*)

BASIS (LIC)

Note that calculations with mGGAs require the extra keyword BASIS. For example:

VXCTYPE VS98

to

VXCTYPE BASIS VS98

For each functional set note down:

1. The total energy in Ha (hartrees)

2. The spin α and spin β orbital energies

Discuss your results.



Chapter 3

H+
2 and H2: Functionals, Potential Energy

Curves, and Geometry Optimizations

3.1 Lesson 3: The Radical Dissociation Problem

DFAs typically do worst for small symmetric systems but often do very well for larger
systems.

This is our first lesson dealing with a molecule—namely H+
2 . It qualifies as one of the small

symmetric systems that create problems for DFAs. In this case the problem is getting the correct
dissociation behavior,

[H+ H• ↔ H• H+] → [H• +H+ ↔ H+ +H•] . (3.1)

All of the fundamental (and deeply interrelated) reasons mentioned in Lesson 2 have been used to
explain why DFAs struggle to describe Eq. (3.1) correctly: self-interaction error (SIE), delocalization
error (DE), and the particle number derivative discontinuity (PNDD). Clearly these problems might
also be expected to arise when a radical R• reacts with a neutral molecule M,

R• +M → R-M• , (3.2)

which is not that uncommon a process in chemistry.

3.1.1 LiH: Fractional Charge Problem (FCP)

Before proceeding further we should add one more problem which is closely related to the SIE, DE,
and PNDD. I will call this the fractional charge problem (FCP). There is no particular relation with
H+

2 except that the FCP gives us an excuse to go more deeply into the PNDD which we will then use
to help us understand the famous problem of incorrect long-distance behavior of the H+

2 potential
energy curve. Of course, users of DFT also need to be aware of the FCP for its own sake.

A particular case of the FCP, discussed in Ref. [38] is the charge transfer reaction between at
“infinite” (i.e., very large but finite) separation,

Li + H → Li+ +H− . (3.3)

33
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Most chemists will recognize this as a spontaneous reaction. Here is some data to help us think:

EA(Li) = EA(Li−) = 0.0227 Ha [100]

EA(H) = EA(H−) = 0.0277 Ha [39]

IP(H) = 0.5000 Ha [textbook result]

IP(Li) = 0.1981 Ha [101]

IP(Li+) = 2.780 Ha [102] . (3.4)

The Mulliken electronegativity of an atom A is,

χ(A) =
IP(A) + EA(A)

2
, (3.5)

so

χ(Li) = 0.1104 Ha

χ(H) = 0.2638 Ha , (3.6)

and H is more electronegative than Li. Hence we expect to see the transfer of an electron from Li to
H. Nevertheless the reaction is endothermic at infinite separation

H + e− → H− − EA(H) = -0.0277 Ha

Li → Li+ + e− IP(Li) = +0.1981 Ha

Li + H → Li+ +H− ∆E = IP(Li)− EA(H) = +0.1704 Ha . (3.7)

It only becomes energetically favorable (i.e., exothermic) at sufficiently small finite separation R
because

∆E = IP(Li)− EA(H)− 1

R
. (3.8)

In fact, ∆E < 0 for R < 5.869 bohr = 3.106 Å. So this is actually the case where the two atoms
should remain neutral when “well separated.” In the LDA, the electrons neither remain neutral nor
transfer an electron. Instead, a fraction of an electron is transferred:

“For separated LiH the local density approximation’ displays no derivative discontinu-
ity, and so it minimizes the energy incorrectly at the configuration Li+0.25H−0.25. The
spin-restricted Hartree-Fock approximation leads to an even worse dissociation limit,
Li+0.45H−0.45.”
— Ref. [38]

How can this be and what (if anything) does it have to do with the properties of the exact functional?
Remember that the exact functional (DFT) is the target at which we should aim when constructing
density functional approximations (DFAs)!

Let us consider the system when charge is transferred: Li+ + H−. In Lesson 2, we learned that
minus the HOMO energy in exact DFT is the IP of the system. But what is the IP for Li+ + H−?
Well, the IP(Li+) = 2.780 Ha [102] and IP(H−) = 0.0277 Ha, so neither can be IP(Li+ + H−). The
only way out of this dilema is to shift one of the atomic potential energy curves relative to the other
as shown schematically in Fig. 3.1. But wait! There is a discontinuity in the figure at x = 50 bohr.
How can this be? If this is a region with no charge density, then Kohn-Sham theory can actually
tell us nothing about this region. However what if the charge density is small but not zero? There
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Figure 3.1: Guesstimated cartoon of the exact DFT potentials for well-separated Li+ and H−. (En-
ergy units are Ha and distance units are bohr, but this picture needs to be taken with a large grain
of salt!)

Figure 3.2: Exact and parabollic estimate (DFA) energy curves for the lithium atom (where the
energy zero has been chosen as the total energy of the neutral atom.)
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is active research in this area (e.g., Ref. [103]) and the answer seems to be that the potential forms
a sort of δ-function-like barrier separating the two atoms.

Of course, DFAs do not have any such strange discontinuities. Figure 3.2 shows the exact

E(N + f) = [fE(N + 1) + (1− f)E(N)] θ(f) + ((1 + f)E(N)− fE(N − 1)) θ(−f) , (3.9)

where

θ(x) =

{
1 ; x > 0
0 ; x < 0

(3.10)

is the usual Heaviside function. In contrast DFAs will be smoother and may be approximated by a
parabola to a first approximation,

E(N + f) = af 2 + bf + c

a =
IP− EA

2

b = −IP + EA

2
c = E(N)

IP = E(N − 1)− E(N)

EA = E(N)−E(N + 1) . (3.11)

Interestingly, Slater’s transition orbital approximation is exact in this approximation,

ǫH(N − 1

2
) = −IP

ǫH(N +
1

2
) = −EA . (3.12)

More generally, by Janak’s theorem,

ǫH(N + f) = 2af + b = (IP− EA) f − IP + EA

2
. (3.13)

We may now estimate the amount of charge transfered from Li to H when a DFA is used because a
fraction f of an electron should be transferred until the HOMO energy is the same for Li+f and for
H−f . From Eq. (3.13),

ǫH(Li
+f) = ǫH(H

−f )

(IP(Li)− EA(Li)) (−f)− IP(Li) + EA(Li)

2
= (IP(H)− EA(H)) f − IP(H) + EA(H)

2
. (3.14)

Solving gives,

f =
1

2

(IP(H)− IP(Li)) + (EA(H)− EA(Li))

(IP(H)− IP(Li))− (EA(H)− EA(Li))

=
1

2

(0.5 Ha− 0.1981 Ha) + (0.0277 Ha− 0.0227 Ha)

(0.5 Ha− 0.1981 Ha)− (0.0277 Ha− 0.0227 Ha)

= 0.5168 . (3.15)

So the prediction is for Li+0.5H−0.5. Although this is not in quantitative agreement with the result
reported in Ref. [38], it does indeed show why we expect only a fraction of the charge of an electron
to be transferred.
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3.1.2 Back to H+
2 : What Should We Expect?

The hydrogen molecule cation, H+
2 , has been called the “simplest molecule” because it has only two

atoms (for which Z = 1) and only one electron. This is also our first chance to focus on “chemistry”
in the sense of reactivity as H+

2 dissociates into H+ and a neutral radical H•,

[H+ H• ↔ H• H+] → [H• +H+ ↔ H+ +H•] . (3.16)

With the usual energy zero (corresponding to infinitely separated electrons and nuclei), the energy
of completely dissociated H+

2 is just the energy of the neutral radical, which is exactly -0.5 Ha. As
we are also interested in the reaction path we can calculate the potential energy curve (PEC) as a
function of the internuclear distance R. Let us ask first about the applicability of exact DFT to this
system and then about the consequences of using a DFA without a PNDD. We will see that the lack
of a proper treatment of the PNDD leads to an incorrect dissociation behavior.

Let us first consider the applicability of exact DFT. This is a question of non-interacting v-
representability. Can we find a system of non-intereacting electrons whose ground state gives the
same charge density as the ground state of H+

2 ? If so, can we calculate it? As H+
2 is a very simple

system, there is a trivial answer. The Kohn-Sham wave function ψ that solves

(
t̂+ v

)
ψ(~r) = ǫψ(~r) (3.17)

is the given by the squareroot of the density,

ψ(~r) =
√

ρ(~r) . (3.18)

Note that this wave function has no nodes so we do not have to worry about the possibility of phase
changes. The Kohn-Sham potential is then

v(~r) = ǫ− t̂ψ(~r)

ψ(~r)
, (3.19)

where t̂ is the kinetic energy operator. If all is done correctly, then, according to what we know about
the HOMO energy in exact DFT, the eigenvalue ǫ = -0.5 Ha will lead to v(~r) in the limit of large
distances from the molecule. So this system is indeed noninteracting v-representable and this is true
for all internuclear distances R. (Caveat: When R is very large, the density between the two nuclei
is effectively zero. This creates a computational difficulty but not a conceptual one as the density is
formally always nonzero at this point.)

In order to actually do this calculation, we would need an accurate solution of the Schrödinger
equation for H+

2 . We will not need this for this lesson, but we will need a PEC. If we are not very
demanding, then calculating an approximate PEC only requires writing about a program about a
dozen lines long [107]. However the H+

2 Born-Oppenheimer problem is separable in eliptical coordi-
nates and the remaining one-dimensional problem may be solved exactly using numerical integration.
So an accurate PEC has long been known for H+

2 . We will also need accurate PECs for H2+
2 and for

H2. Sharp’s review in Atomic Data [108] provides an excellent overview of the various ground and
excited-state potential energy surfaces of these molecules. Figures 2 and 3 of that paper show very
nice plots of potential energy curves. Accurate results are tabulated in Table 3.1. The numbers in
this table are not taken from the plots in Sharp’s review. Instead, the values for the H2 potential
energy curve in this table were taken from the very accurate Born-Oppenheimer calculations of Kolos
and Roothaan using the Hylleraas method (Table IV of Ref. [106].) Also given are spin-restricted
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Table 3.1: Collected ground state potential energy curves for H2+
2 , H+

2 , and H2. See text. All values
are in atomic units (distances are bohr and energies are Ha.)

R (bohr) Energy (Ha)
H2+

2 H+
2 [104, 105] H2 [106] RHF H2

0.8 +1.2500000 -0.1090030 -1.020175 -0.9807128
0.9 +1.1111111 -0.2805032 -1.083651 -1.0443116
1.0 +1.0000000 -0.4034420 -1.124517 -1.0851144
1.1 +0.9090909 -0.4926148 -1.150043 -1.1104338
1.2 +0.8333333 -0.5576986 -1.164930 -1.1250078
1.3 +0.7692308 -0.6052379 -1.172323 -1.1723230
1.35 +0.7407407 -0.6239064 -1.173934 -1.1333790
1.39 +0.7194245 -0.6368097 -1.174420 -1.1336510
1.40 +0.7242857 -0.6397790 -1.174442 -1.1336167
1.41 +0.7092199 -0.6426514 -1.174428 -1.1335442
1.45 +0.6896552 -0.6532229 -1.174022 -1.1328956
1.5 +0.6666667 -0.6645509 -1.172828 -1.1313624
1.6 +0.6250000 -0.6818903 -1.168538 -1.1263398
1.8 +0.5555556 -0.7007217 -1.154985 -1.1109541
2.0 +0.5000000 -0.7055500 -1.137999 -1.0916189
2.2 +0.4545455 -0.7018677 -1.119920 -1.0706422
2.4 +0.4166667 -0.6931046 -1.102084 -1.0493324
2.6 +0.3846154 -0.6814745 -1.085288 -1.0284347
2.8 +0.3571429 -0.6684156 -1.069956 -1.0083673
3.0 +0.3333333 -0.6548443 -1.056297 -0.9893529
3.2 +0.3125000 -0.6413228 -1.044395 -0.9714956
3.6 +0.2777778 -0.6156030 -1.025663 -0.9393347
3.8 +0.2631579 -0.6036960 -1.018506 -0.9249804
4.0 +0.2500000 -0.5925234 -1.007867 -0.9117103
4.2 +0.2380952 -0.5821281 -1.007867 -0.8994630
5.0 +0.2000000 -0.5486641 -0.8593936
6.0 +0.1666667 -0.5234549 -0.8248475
7.0 +0.1428571 -0.5108372 -0.8019376
8.0 +0.1250000 -0.5049567 -0.7864752
9.0 +0.1111111 -0.5023036 -0.7757476
10.0 +0.1000000 -0.5011162 -0.7680437
11.0 +0.0909091 -0.5005781 -0.7623010
12.0 +0.0833333 -0.5003261 -0.7578581
13.0 +0.0769231 -0.5002012 -0.7542987
14.0 +0.0714286 -0.5001346 -0.7513597
15.0 +0.0666667 -0.5000959 -0.7488739
16.0 +0.0625000 -0.5000715 -0.7467320
17.0 +0.0588235 -0.5000551 -0.7448601
18.0 +0.0555556 -0.5000434 -0.7432062
19.0 +0.0526316 -0.5000348 -0.7417322
20.0 +0.0500000 -0.5000283 -0.7404090
21.0 +0.0476190 -0.5000232 -0.7392138
22.0 +0.0454545 -0.5000193 -0.7381278
23.0 +0.0434783 -0.5000161 -0.7371383
24.0 +0.0416667 -0.5000136 -0.7362312
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(a)

(b)

(c)

Figure 3.3: Potential energy curves for H2+
2 [H2(2+)], H+

2 [H2(+)], and for H2 [H2], ploted using the
data in Table 3.1: (a) H2+

2 , H+
2 , and H2; (b) H

+
2 ; and (c) H2 and RHF H2.
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Figure 3.4: Hartree-Fock formulae for a two-orbital two-electron model (TOTEM): ǫH(L), HOMO
(LUMO) orbital energy including electron-electron repulsions; ǫ0H(L), HOMO (LUMO) orbital energy

excluding electron-electron repulsions; [ρH ||ρH ], Coulomb repulsion integral; [HL||LH ], exchange
integral (included for completeness but not needed in this lesson); and total energy E including the
repulsion 1/R between the nuclei separated by a distance R.

Figure 3.5: Potential energy curves for H+
2 : exact, blue line; estimated DFA orbital energy

[Eq. (3.20)], red line; estimated DFA potential energy curve [Eq. (3.25)], yellow line.

Hartree-Fock (RHF) results for H2 calculated at the FOCK/AUG-CC-PV5Z level. The H+
2 potential

energy curve values in this table are calculated using the Padé approximant fits of Ref. [104, 105].
Finally, note that the potential energy curve for H2+

2 is just V (R) = 1/R.

Plots of the PECs for H2+
2 , H+

2 , and H2 are shown in Fig. 3.3. The H2+
2 curve is repulsive with

a large R limit of V = 0. The H+
2 has the shape of a generic PEC with a hard wall at small R, a

minimum at the equilibrium bond distance, and goes to V = -0.5 Ha in the large R limit. The exact
PEC for H2 also has the shape of a generic PEC but goes to V = -0.5 Ha at large R. The RHF H2

curve is qualitatively similar but dissociates to V ≈ -0.735 Ha for reasons which will become clear in
Lesson 4.

Let us now turn to the problem of what we expect when using a DFA with no PNDD. This
problem will be approached by constructing a Hartree-Fock curve using classic Hartree-Fock formulae
(Fig. 3.4) but changing the value of the occupied orbital energy to reflect the behavior of a DFA without
PNDD. This will be referred to as our DFA model.
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Figure 3.6: Variation of the term [ρ||ρ]− 1/R as a function of R.

For our DFA model we have already established that,

ǫH(H
2+
2 ) ≈ −IP(H2+

2 ) + EA(H2+
2 )

2
=
E(H2)−E(H2+

2 )

2
. (3.20)

This gives us the red line shown in Fig. 3.5. Beyond R = 3.5 bohr it is very flat and slowly varying.
We may estimate the limiting value at large R by using the Hartree-Fock model:

E(H2) = 2ǫ0H + [ρ||ρ]

E(H2+
2 ) =

1

R

ǫH(H
2+
2 ) ≈ ǫ0H +

([ρ||ρ]− 1/R)

2
, (3.21)

where ǫ0H = -0.5 Ha is the bare orbital energy and [ρ||ρ] is the Coulomb repulsion integral of the
σ bonding orbital with itself. Note that the second term on the last line of Eq. (3.21) gives us an
explicit expression for the self-interaction error (SIE) in the orbital energy. In order to evaluate this
SIE, we must estimate the [ρ||ρ] integral which we may do using using the formula,

[ρ||ρ] = E(H2)− 2E(H+
2 ) , (3.22)

and the RHF H2 and H+
2 PECs. Figure 3.6 shows how this integral varies with R. In order to

estimate the large R limit, we need to realize that

ρ =

[
1√
2
(sA + sB)

]2

. (3.23)

This gives that the large R limit is

[ρ||ρ] = 1

2
[(sA)

2||(sA)2] ≈ −1

2
[ǫH(H) + EA(H)] =

0.5 Ha− 0.0277 Ha

2
= 0.236 Ha , (3.24)

in good agreement with Fig. 3.6.
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In order to obtain an estimate of the DFA total energy we may continue to use the Hartree-Fock
theory as a model for estimating terms. The total DFA energy is thus,

E(DFA H+
2 ) = ǫH(H

+
2 )− [ρ||ρ]

= ǫ0H(H
+
2 ) +

([ρ||ρ]− 1/R)

2
− [ρ||ρ]

= ǫ0H(H
+
2 )−

([ρ||ρ] + 1/R)

2
. (3.25)

The second term in the last line is the SIE in the energy. Equation (3.25 gives the yellow curve in
Fig. 3.5 which is in curiously good agreement with, for example, Fig. 1 in Ref. [29]. In particular we
see that the DFA H+

2 energy should go through a maximum around 7 bohr (3.7 Å). According to
Eq. (3.25) should be -0.5 Ha - (0.236 Ha/2) = -0.618 Ha, in good agreement with the yellow curve
in Fig. 3.5. We have seen how the predicted curious shape of the DFA H+

2 comes from the lack of
a PNDD. Other explanations given in the literature associate the shape with a delocalization error
[29] or a self-interaction error [109]. We have tried to show that these are not really independent
explanations but rather all closely interrelated failures of DFAs.

3.1.3 Exercise

Compute the total energy and occupied orbital energies with different functionals and the AUG-CC-
PV5Z orbital basis set for the bond lengths given in Table 3.1 and plot the values along with the
accurate PEC of H+

2 whose data points are given in the table. Also shift the calculated PECs with
different functionals to have the same minimum energy as does the accurate PEC in order to be able
to better compare the shape of the PEC curves near the equilibrium geometry. As this requires quite
a number of calculations for each value of R we will limit the number of functionals by chosing one
functional from each rung of Jacob’s ladder:

FOCK Hartree-Fock model, the exact answer in this case

NONE Hartree model

VWN LDA

BLYP GGA

B3LYP hybrid

Here is an input file with a recommended basis that you can modify and run Copy the following
input file and run deMon2k for VSCTYPE VWN and for the other functionals mentioned above:

TITLE H2(+)

MULTI 2

CHARGE 1

#

VXCTYPE VWN

#

PRINT MOS

#

# --- GEOMETRY ---
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#

#

GEOMETRY CARTESIAN BOHR

H 0.000000 0.000000 0.000000

H 0.000000 0.000000 1.400000

#

AUXIS (GEN-A3*)

BASIS (AUG-CC-PV5Z)

Remember to always check that your calculations are converged. Some of your calculations will
require tricks to make them converge. deMon2k offers a variety of tricks such as DIIS, MIXING, LEVEL
SHIFT, and SMEAR. Experiment to see what seems to work best for this problem! Also remember that

“It is never enough to just calculate; you must also analyse and discuss your results.” —
paraphrasing from memory some remarks made by Roald Hoffmann about his approach
to quantum chemistry

3.2 Lesson 4: Treating Multideterminantal Problems by

Symmetry-Breaking

The Boyg told Peer Gynt to “Go round” in Henrik Ibsen’s play Peer Gynt

In this lesson we confront another one of the fundamental difficulties of DFT. As the only wave
function in DFT is that of the fictitious system of noninteracting electrons, it must be a single deter-
minant unless the ground state of the fictitious system happens to be degenerate. But, while single
determental wave functions are reasonable first approximations to the wave function of closed-shell
molecules at their equilibrium geometry, single-determinantal wave functions are often inappropri-
ate for describing open-shell systems or the making and breaking of bonds in a closed-shell system.
Nevertheless DFAs can do surprisingly well here provided we have a good understanding of the mul-
tideterminantal problem. In particular, we will see that DFAs do much better for describing the
potential energy curve of H2 than for describing the potential energy curve of H+

2 provided we find
an appropriate way to go round the multideterminantal problem (i.e., symmetry breaking.) Even
here, as we shall see, there will be a price to pay for the trick we play.

Our focus here is on wave functions. Energy will be treated more qualitatively, until (of course)
we get to the calculations. In principle, the theory in this lesson is a standard part of basic physical
chemistry courses. However I have noticed that it tends more and more to be neglected or forgotten.
This is a shame because we are here at the heart of chemistry—namely the making and breaking of
chemical bonds.

3.2.1 Preliminaries

Consider an (x, y, z)-coordinate system and place the H2 molecule along the z-axis with the origin
at the center point between the two atoms. Then the (x, y)-plane forms a symmetry plane which
exchanges the two atoms, which will be distinguished by the letters A and B. (See Fig. 3.7.) Also
any wave functions that we will construct will be either even (g for the German gerade) or odd (u
for the German ungerade) with respect to reflection through that symmetry plane. This gives us a
very simple character table which will be quite adequate for our purposes:
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Figure 3.7: “Quantum chemistry” coordinate system chosen for studying H2.

E σ(x,y)
g 1 1
u 1 -1

Here E is the identity symmetry operation which does nothing, while σ(x,y) is the symmetry operation
corresponding to reflection in the (x, y) mirror plane (HA ↔ HB.)

We will also make the usual LCAO approximation which says that we will take (as a first ap-
proximation) our molecular orbitals (MOs) to be linear combinations of the (valence) atomic orbitals
(AOs), namely sA on hydrogen atom A and sB on hydrogen atom B. These MOs will be of σ type
because they are cylindrically symmetric with respect to rotation around the internuclear axis. In-
cluding mirror symmetry we get the two MOs,

σg =
1

√

2(1 + S)
(sA + sB)

σu =
1

√

2(1− S)
(sA − sB) , (3.26)

where

〈sA|sA〉 = 〈sB|sB〉 = 1

〈sA|sB〉 = 〈sB|sA〉 = S . (3.27)

The wave functions given by Eq. (3.26) are orthonormal:

〈σg|σg〉 = 〈σu|σu〉 = 1

〈σg|σu〉 = 〈σu|σg〉 = 0 , (3.28)

where normality follows directly from symmetry. Most chemistry students will know σg as the σ
bonding MO while σu is the σ∗ antibonding MO. The quantity S = S(R) is the overlap integral and
goes to zero in the limit of large internuclear separation, R → ∞.
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As we have a two-electron system, we must also build a basis of antisymmetric two-electron wave
functions:

σu [ , ] [↑, ] [ , ↓] [↑, ] [ , ↓] [↑, ↓]
σg [↑, ↓] [ , ↓] [↑, ] [↑, ] [ , ↓] [ , ]

|σg, σ̄g| |σu, σ̄g| |σg, σ̄u| |σg, σu| |σ̄g, σ̄u| |σu, σ̄u|
Here the overbar signifies β =↓ spin while the absence of an overbar signifies α =↑. For example,
the Slater determinant,

|σu, σ̄g| =
1√
2
(σu(1)α(1)σg(2)β(2)− σg(1)β(1)σu(2)α(2))

=
1√
2
det

∣
∣
∣
∣

σu(1)α(1) σg(1)β(1)
σu(2)α(2) σg(2)β(2)

∣
∣
∣
∣

(3.29)

As we will be using the algebraic properties of Slater determinants quite a bit, let us note the following
two properties for generic orbitals φ, ϕ, and ψ:

|φ, ψ| = −|ψ, φ|
|aφ+ bϕ, ψ| = a|φ, ψ|+ b|ϕ, ψ| . (3.30)

All of the determinants that we have constructed out of σg and σu orbitals have Σ symmetry.
(Note the well-established spectroscopic convention that many-electron quantities are designated by
capital letters with lower-case letters being reserved for orbital quantitities.) These determinants
may also be divided according to their mirror symmetry and assigned as either gerade or ungerade.
Hence,

|σg, σ̄g| is (1,0)Σg =
1Σg(MS = 0)

|σu, σ̄g| is (?,0)Σu =
?Σu(MS = 0)

|σg, σ̄u| is (?,0)Σu =
?Σu(MS = 0)

|σg, σu| is (3,1)Σu =
3Σu(MS = 1)

|σ̄g, σ̄u| is (3,−1)Σu =
3Σu(MS = −1)

|σu, σ̄u| is (1,0)Σg =
1Σg(MS = 0) , (3.31)

because, for example,

Ê|σu, σ̄g| = |σu, σ̄g|
σ̂(x,y)|σu, σ̄g| = | − σu, σ̄g| = −|σu, σ̄g| . (3.32)

Notice that I have also added the Ŝz quantum number MS which, in the case of single determinants
is just the sum of the values of mS = ±1/2 of the orbitals making up the determinant. In particular,

MS =
n↑ − n↓

2
, (3.33)

where n↑(↓) denotes the number of spin ↑ (↓) electrons in the determinant. It would also be desirable
to assign the total spin quantum number S, but not all of the determinants are eigenfunctions of
Ŝ. When they are, the corresponding eigenvalue is S(S + 1) and the spin multiplicity is 2S + 1. In
most of the cases, the value of the spin multiplicity is sufficiently obvious that I have included it as
a pre-exponent 2S+1Σ = 1Σ or 3Σ. However two of the determinants have neither singlet nor triplet
symmetry. This is sorted out in the next subsection.
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3.2.2 Excited States

Two-electron wave functions have the nice property that they always factor into a spatial times
a spin part. We may use this property to discover how to make the missing singlet and triplet
wave functions. However this will be followed by a more formal discussion of spin symmetry for
many-electron systems using second quantization.

Let us begin by factoring the two (1,0)Σg wave functions:

|σg, σ̄g| =
1√
2
(σg(1)α(1)σg(2)β(2)− σg(1)β(1)σg(2)α(2))

= (σg(1)σg(2))

[
1√
2
(α(1)β(2)− β(1)α(2))

]

|σu, σ̄u| =
1√
2
(σu(1)α(1)σu(2)β(2)− σu(1)β(1)σu(2)α(2))

= (σu(1)σu(2))

[
1√
2
(α(1)β(2)− β(1)α(2))

]

. (3.34)

Notice how each wave function is expressed as the product of a spatial part (namely σg(1)σg(2) or
σu(1)σu(2)) and a spin part [namely (1/

√
2)(α(1)β(2)−β(2)α(1))]. As the total wave function must

be antisymmetric, exactly one (not both) of the two parts must be antisymmetric while the other is
symmetric. In the case of singlet wave functions, the spatial part is symmetric and the spin part is
antisymmetric. Also spin does not normally appear in most quantum chemistry model hamiltonians,
so that the total energy is determined purely by the spatial part. This is why early molecular orbital
(MO) theory just wrote the wave function as σg(1)σg(2) (see, e.g., Ref. [110] pp. 687-688.) This is
a good first approximation to the H2 wave function near the equilibrium geometry, but (as we shall
see) does not describe bond breaking very well.

It is also easy to factor the wave functions for the (3,±1)Σu states:

|σg, σu| =
1√
2
(σg(1)α(1)σu(2)α(2)− σu(1)α(1)σg(2)α(2))

=

[
1√
2
(σg(1)σu(2)− σu(1)σg(2))

]

(α(1)α(2))

|σ̄g, σ̄u| =
1√
2
(σg(1)β(1)σu(2)β(2)− σu(1)β(1)σg(2)β(2))

=

[
1√
2
(σg(1)σu(2)− σu(1)σg(2))

]

(β(1)β(2)) . (3.35)

This time it is the spatial part which is antisymmetric while the spin part is symmetric.
The reader is invited to try to factor the two mixed-symmetry wave functions |σu, σ̄g| and |σg, σ̄u|

into the product of a spatial and a spin part. It simply cannot be done! Instead we need to take
the plus and minus combinations of the two mixed-symmetry wave functions in order to obtain
symmetry-pure wave functions:

1√
2
(|σu, σ̄g| ± |σg, σ̄u|) =

1

2
(σu(1)α(1)σg(2)β(2)− σg(1)β(1)σu(2)α(2))

± (σg(1)α(1)σu(2)β(2)− σu(1)β(1)σg(2)α(2))

=

[
1√
2
(σu(1)σg(2)± σg(1)σu(2))

]

×
[

1√
2
(α(1)β(2)∓ β(1)α(2))

]

. (3.36)
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This gives us a (1,0)Σu wave function,

1√
2
(|σu, σ̄g|+ |σg, σ̄u|) =

[
1√
2
(σu(1)σg(2) + σg(1)σu(2))

]

×
[

1√
2
(α(1)β(2)− β(1)α(2))

]

, (3.37)

and a (3,0)Σu wave function,

1√
2
(|σu, σ̄g| − |σg, σ̄u|) =

[
1√
2
(σu(1)σg(2)− σg(1)σu(2))

]

×
[

1√
2
(α(1)β(2) + β(1)α(2))

]

, (3.38)

Notice that the three triplet wave functions ((3,−1)Σu,
(3,0)Σu, and

(3,+1)Σu) have exactly the same
spatial part. (And there are exactly three linearly-independent ways to make the symmetric spin
part.) Therefore, as long as the hamiltonian is spin-free (i.e., no external magnetic fields or spin-orbit
coupling terms), these three states must be rigorously energetically degenerate (which is why it is
called a triplet state.)

We may also determine the relative ordering of the 3Σu and 1Σu states using the multiplet spin
method [111, 112]. The goal is to reduce all energy expressions to single-determinantal expressions
which we may then evaluate with our intuitive knowledge of how to write down Hartree-Fock energy
expressions. We begin with the observation that

E((1,0)Σu) =
1

2
〈|σu, σ̄g|+ |σg, σ̄u| |Ĥ| |σu, σ̄g|+ |σg, σ̄u|〉

= 〈|σu, σ̄g| |Ĥ| |σu, σ̄g|〉+ 〈|σu, σ̄g| |Ĥ| |σg, σ̄u|〉
= E(|σu, σ̄g|) + 〈|σu, σ̄g| |Ĥ| |σg, σ̄u|〉

E((3,0)Σu) =
1

2
〈|σu, σ̄g| − |σg, σ̄u| |Ĥ| |σu, σ̄g| − |σg, σ̄u|〉

= 〈|σu, σ̄g| |Ĥ| |σu, σ̄g|〉 − 〈|σu, σ̄g| |Ĥ| |σg, σ̄u|〉
= E(|σu, σ̄g|)− 〈|σu, σ̄g| |Ĥ| |σg, σ̄u|〉 , (3.39)

The cross term, 〈|σu, σ̄g| |Ĥ| |σg, σ̄u|〉, is problematic but is easily eliminated because,

E((1,0)Σu) + E((3,0)Σu) = 2E(|σu, σ̄g|) . (3.40)

We now use the fact that,
E((3,0)Σu) = E((3,1)Σu) , (3.41)

to obtain the singlet and triplet energies in terms of expectation values of the hamiltonian with
purely single-determinantal wave functions:

E((3,0)Σu) = E(|σu, σg|)
E((1,0)Σu) = 2E(|σu, σ̄g|)− E(|σu, σg|) . (3.42)

As chemical intuition works very nicely at the single-determinantal level (Hartree-Fock approxima-
tion), we may now write out the various energies from highest to lowest in terms of the bare orbital
energies (ǫ0) and coulomb [(φφ||ψψ)] and exchange integrals [(φψ||ψφ)], just by counting same-spin
and opposite-spin interactions:
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σu [↑, ↓]
σg [ , ]

E((1,0)Σg) = 2ǫ0u + (σuσu||σuσu)

σu[↑, ] σu[ , ↓]
+

σg[ , ↓] σg[↑, ]

E((1,0)Σu) = ǫ0g + ǫ0u + (σuσu||σuσu) + (σgσu||σuσg)

σu [↑, ]
σg [↑, ]

E((3,1)Σu) = ǫ0g + ǫ0u + (σuσu||σgσg)− (σgσu||σuσg)

σu[↑, ] σu[ , ↓]
-

σg[ , ↓] σg[↑, ]

E((3,0)Σu) = ǫ0g + ǫ0u + (σuσu||σuσu)− (σgσu||σuσg)

σu [ , ↓]
σg [ , ↓]

E((3,−1)Σu) = ǫ0g + ǫ0u + (σuσu||σgσg)− (σgσu||σuσg)

σu [ , ]
σg [↑, ↓]

E((1,0)Σg) = 2ǫ0g + (σgσg||σgσg)

Physically, the 1Σu state is higher in energy than the 3Σu state is that electrons with the same spin
avoid each other in space, thus reducing their electron repulsion (by the exchange integral) and hence
leading to a lower energy than is the case with opposite spin electrons (which, we see, is raised in
energy by the exchange integral.)

3.2.3 Spin-Coupling Theory

So far the treatment of spin has been kept as elementary as possible, but this limits us to two-electron
wave functions. Let us now try to give a more advanced treatment of spin. This treatment can be
generalized to more than two spins where wave functions no longer factor into the product of a
spatial and a spin part. Even in the two-electron case, it may help to make the structure of the spin
problem more evident. We will skip many details which may be found in advanced textbooks, but
there should be enough detail that the reader can follow and apply the basic ideas. We consider
the case where we have N unpaired spins to place in N orbitals. In our two-electron problem, this
corresponds to the case of placing one electron in each of the σg and σu orbitals.

The spin-coupling problem is of fundamental importance in the few-body problem and is closely
linked to the Lie algebra treatment of continuous groups. Under these conditions, it is perhaps not
surprising that many different ways have been invented to handle spin-coupling (e.g., Clebsch-Gordon
coefficients, Young diagrams based upon the symmetric group, graphical unitary group treatment,
etc.) The approach presented here is based upon ladder operators. The ladder operator treatment
of angular momentum is treated in most graduate-level textbooks on quantum physics.
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In the case of a single electron, we have the three basic spin operators ŝx, ŝy, and ŝz which commute
with our spin-less hamiltonian, but not with each other. Hence the three spin-components do not
consititute a set of three simultaneous observables. They obey the cyclic commutation relations,

[ŝx, ŝy] = i~ŝz

[ŝz, ŝx] = i~ŝy

[ŝy, ŝz] = i~ŝx . (3.43)

In some sense, any set of three operators that obey these relations may be thought of as “angular
momentum operators.” All three of the basic spin operators commute with the total spin operator,

ŝ2 = ŝ2x + ŝ2y + ŝ2z . (3.44)

As
[

Ĥ, ŝz

]

=
[

Ĥ, ŝ2
]

= [ŝ2, ŝz] = 0, quantum mechanics tells us that we may chose the simultaneious

eigenvalues of ŝ2 and of ŝz as constants of motion,

ŝ2ψs,ms
= s(s+ 1)~2ψs,ms

ŝzψs,ms
= ms~ψs,ms

. (3.45)

In particular, for a single electron, s = 1/2 and ms = ±1/2, so we have

ŝ2ψ =
3

4
~2ψ

ŝzψ = +
1

2
~ψ

ŝ2ψ̄ =
3

4
~2ψ̄

ŝzψ̄ = −1

2
~ψ . (3.46)

It is also useful to define the raising operator,

ŝ+ = sx + isy , (3.47)

and the lowering operator,
ŝ− = sx − isy . (3.48)

It can be shown that

ŝ+ψ = 0

ŝ+ψ̄ = ~ψ

ŝ−ψ = ~ψ̄

ŝ−ψ̄ = 0 . (3.49)

We say that each pair (ψ, ψ̄) forms a spin ladder which can be climbed with ŝ+ and descended with
ŝ−.

In the case of N electrons, the spin operators generalize to,

Ŝx =
∑

i=1,N

ŝx(i)

Ŝy =
∑

i=1,N

ŝy(i)

Ŝz =
∑

i=1,N

ŝz(i) . (3.50)
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Figure 3.8: Spin-coupling diagram for counting the number of spin ladders as a function of the
number of electrons. For example, for N = 4 electrons, there is one quintet ladder with S = 2, three
triplet ladders with S = 1, and two singlet ladders with S = 0.

(Notice the use of capital letters since we are now dealing with many-electron quantities.) The
definitions,

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z

Ŝ+ = Ŝx + iŜy

Ŝ− = Ŝx − iŜz , (3.51)

still hold, but

Ŝ2 6=
∑

i=1,N

ŝ2(i) . (3.52)

This complicates the problem of constructing spin eigenfunctions. In general, for arbitary N , there
will be several spin ladders. The precise number can be read of the spin-coupling diagram 3.8.

We will explain one method for constructing spin eigenfunctions and illustrate the method by
applying it to the case of N = 2 electrons placed in the orbitals ψ and φ. This consists in beginning
with the head of the spin ladder with the largest value of S which is always single determinantal and
descending, knowing the general relations,

Ŝ+Ψ(S,MS) = ~
√

S(S + 1)−MS(MS + 1)Ψ(S,MS+1)

Ŝ−Ψ(2S+1,MS) = ~
√

S(S + 1)−MS(MS − 1)Ψ(S,MS−1) , (3.53)

where the complicated prefactor preserves normalization. Although not strictly necessary, I will
rewrite key operators in second-quantized form.
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In order to introduce second-quantized operators, let us abandon the overbar notation and work
directly with spin-orbitals for this paragraph only! We will assume a spin-orbital basis of orthonormal
orbitals. The effect of a creation operator r† = â†r on a single determinant wave function |s, t, u, v, · · · |
is to add another spin-orbital at the beginning of the determinant,

r†|s, t, u, v, · · · | = |r, s, t, u, v, · · · | . (3.54)

The result is zero if r is already one of the spin-orbitals in the determinant. The adjoint of the
creation operator is the corresponding annihilation operator r = âr which undoes the operation of
r†,

r|r, s, t, u, v, · · · | = |s, t, u, v, · · · | . (3.55)

If the spin-orbital r is not in the beginning of the determinant list, then use antisymmetry to permute
r to the beginning of the determinant list, keeping track of any sign changes. If the spin-orbital r
is not in the list, then the action of r on the determinant is zero. It is then possible to deduce the
following anticommutation rules:

[r, s]+ =
[
r†, s†

]

+
= 0

[
r, s†

]

+
=

[
r†, s

]

+
= δr,s . (3.56)

Writing operators in second-quantized form provides an easy machinary for working with antisym-
metric wave functions without having to think too much (which is why I like to use it.)

Let us return now to our usual notation and denote spin α (↑) orbitals by r and spin β (↓) orbitals
by r̄. It is now easy to write the operators,

n̂↑ =
∑

r

r†r

n̂↓ =
∑

r

r̄†r̄ , (3.57)

that count the number of each type of spin in a determinant or a linear combination of determinants
all with the same number of orbitals of each spin-type. Let us call this wave function, Ψ, then

n̂↑Ψ = n↑Ψ

n̂↓Ψ = n↓Ψ . (3.58)

From Eq. (3.33), we have that

Ŝz =
~

2
(n̂↑ − n̂↓) . (3.59)

Expressing Ŝ2 is aided by knowing that,

Ŝ2 = Ŝ+Ŝ− + Ŝz

(

Ŝz − ~1̂
)

Ŝ2 = Ŝ−Ŝ+ + Ŝz

(

Ŝz + ~1̂
)

, (3.60)

which comes from the standard ladder operator treatment of angular momenta, and using the second-
quantized forms of the raising and lowering operators,

Ŝ+ = ~
∑

r

r†r̄

Ŝ− = ~
∑

r

r̄†r .
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Then it is easy to derive that,

Ŝ2 = ~2P̂ +
~2

4
(n̂↑ − n̂↓)

2 +
~2

2
n̂ , (3.61)

where

n̂ = n̂↑ + n̂↓ (3.62)

is the number operator which just counts the number of electrons in the wave function and

P̂ =
∑

r,s

r†s̄†sr̄ (3.63)

is the spin transposition operator which sums over all possible exchanges of α =↑ and β =↓ pairwise
exchanges.

We are now all set to apply these formulae to obtain our spin-adapted functions for the two-
electron problem. The spin-coupling diagram (Fig. 3.8) tells us that there will be one one triplet
ladder with (S,MS) = (1,+1), (1, 0), (1,−1) and one singlet ladder with (S,MS) = (0, 0). To find
the head of the triplet ladder, we only need to identify the wave function with MS = 1, namely

Ψ(1,+1) = |ψ, φ| . (3.64)

We can verify that this is indeed a spin eigenfunction with the correct quantum numbers:

ŜzΨ(1,+1) =
~

2
(n̂↑ − n̂↓) |ψ, φ|

=
~

2
(2− 0) |ψ, φ|

= ~|ψ, φ|
⇒ MS = 1

Ŝ2Ψ(1,+1) =

(

~2P̂ +
~2

4
(n̂↑ − n̂↓)

2 +
~2

2
n̂

)

|ψ, φ|

=

(

0 +
~2

4
22 +

~2

2
2

)

|ψ, φ|

= 2~2|ψ, φ|
⇒ S(S + 1) = 2 ⇒ S = 1 . (3.65)

Now we apply the spin lowering operator to find Ψ(1,0) by descending the ladder:

Ŝ−|ψ, φ| = ~

(
∑

r

r̄†r

)

|ψ, φ|

= ~
(
|ψ̄, φ|+ |ψ, φ̄|

)

= ~
√
2Ψ(1,0) , (3.66)

according to Eq. (3.53). Hence,

Ψ(1,0) =
1√
2

(
|ψ̄, φ|+ |ψ, φ̄|

)
, (3.67)



3.2. LESSON 4: TREATINGMULTIDETERMINANTAL PROBLEMS BY SYMMETRY-BREAKING53

but this result could just as easily be obtained by using the orthonormality of the determinants
directly. Let us check that this is indeed a simultaneous eigenfunction of Ŝz and of Ŝ2:

ŜzΨ(1,0) =
~

2
(n̂↑ − n̂↓)

1√
2

(
|ψ̄, φ|+ |ψ, φ̄|

)

=
~

2
(1− 1)

1√
2

(
|ψ̄, φ|+ |ψ, φ̄|

)

= 0~
1√
2

(
|ψ̄, φ|+ |ψ, φ̄|

)

⇒ MS = 0

Ŝ2Ψ(1,0) =

(

~2P̂ +
~2

4
(n̂↑ − n̂↓)

2 +
~2

2
n̂

)
1√
2

(
|ψ̄, φ|+ |ψ, φ̄|

)

= ~2

(

1 +
0

4
+

2

2

)
1√
2

(
|ψ̄, φ|+ |ψ, φ̄|

)

= 2~2Ψ(1,0) = S(S + 1)~2Ψ(1,0)

⇒ S = 1 . (3.68)

So it does check! To obtain Ψ(1,−1), apply the spin-lowering operator once again:

Ŝ−Ψ(1,−1) = ~

(
∑

r

r̄†r

)

1√
2

(
|ψ̄, φ|+ |ψ, φ̄|

)
=

√
2|ψ̄, φ̄| . (3.69)

So, after normalization,
Ψ(1,−1) = |ψ̄, φ̄| , (3.70)

and we will leave it as an exercise to the reader to verify that this is a simultaneous eigenfunction
of Ŝz and of Ŝ2 with the correct eigenvalues. We have missed Ψ(0,0) but we know it must be a linear
combination of the two determinants with MS = 0 — namely |ψ̄, φ| and |ψ, ψ̄| — and be orthogonal
to Ψ(1,0). There is no choice left but

Ψ(0,0) =
1

2

(
|ψ̄, φ| − |ψ, φ̄|

)
. (3.71)

The reader is invited to verify that this is a simultaneous eigenfunction of Ŝz and of Ŝ2 with the
correct eigenvalues and that both the raising and the lower operators annihilate Ψ(0,0). This confirms
the main results of the previous subsection and provides some powerful tools for treating the case of
more than N = 2 singly-occupied orbitals.

3.2.4 Dissociation Limits

One (overly narrow) definition of chemistry is that it is all about chemical reactions, i.e., making
and breaking bonds. The dissociation

H2 → 2H , (3.72)

has two possible products, namely ions (homolytic bond cleavage),

[H:− +H+ ↔ H+ +H:−] , (3.73)

and radicals (heterolytic bond cleavage),
[
H↑ +H↓ ↔ H↓ +H↑

]
. (3.74)
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Note that thermal (i.e., ground-state) dissociation corresponds to dissociation into radicals. Other
heterolytic outcomes are,

H↑ +H↑ , (3.75)

and,
H↓ +H↓ , (3.76)

Let us check the dissociation limits of our wave functions. To do so, we must re-express our wave
functions in terms of atomic orbitals and then follow the old valence-bond practice [113] of associating
wave functions with Lewis dot structures [114].

In the limit of R = ∞, then S = 0 and our orbitals become

σg =
1√
2
(sA + sB)

σu =
1√
2
(sA − sB) , (3.77)

In this same limit,

Ψ(1,1) = |σg, σu|

=
1

2
|sA + sB, sA − sB|

=
1

2
(−|sA, sB|+ |sB, sA|)

= −|sA, sB| , (3.78)

which corresponds to the Lewis dot structure (3.75). Similarly,

Ψ(1,−1) = |σ̄g, σ̄u| = −|s̄A, s̄B| , (3.79)

which corresponds to the Lewis dot structure (3.76). We might expect that the dissociation limit of
Ψ(1,0) is given by the Lewis dot structure (3.74) and this indeed is true:

Ψ(1,0) =
1√
2
(|σu, σ̄g| − |σg, σ̄u|)

=
1

2
√
2
(|sA − sB, s̄A + s̄B| − |sA + sB, s̄A − s̄B|)

=
1

2
√
2
[(|sA, s̄A|+ |sA, s̄B| − |sB, s̄A| − |sB, s̄B|)− (|sA, s̄A| − |sA, s̄B|+ |sB, s̄A| − |sB, s̄B|)]

=
1√
2
(|sA, s̄B| − |sB, s̄A|) . (3.80)

We now come to the famous problem of the dissociation of the ground-state wave function.
According to näıve MO theory, the ground-state wave function is,

Ψ1
(0,0) = |σg, σ̄g|

=
1

2
|sA + sB, s̄A + s̄B|

=
1

2
(|sA, s̄A|+ |sB, s̄B|) +

1

2
(|sA, s̄B|+ |sB, s̄A|) . (3.81)
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That is,

Ψ1
(0,0) =

1√
2

(

Ψionic
(0,0) +Ψcovalent

(0,0)

)

, (3.82)

is an equal mixture of a covalent wave function,

Ψcovalent
(0,0) =

1√
2
(|sA, s̄B|+ |sB, s̄A|) , (3.83)

corresponding to the expected dissociation into radicals [Lewis dot structure (3.74)] and an ionic
wave function,

Ψionic
(0,0) =

1√
2
(|sA, s̄A|+ |sB, s̄B|) , (3.84)

corresponding to dissociation into ions [Lewis dot structure (3.73)]. The presence of the ionic term
means that MO theory will not dissociate correctly, but rather will dissociate to too high an energy.
In order to correct the problem, let us look at the R → ∞ limit of the doubly-excited determinant,

Ψ2
(0,0) = |σu, σ̄u|

=
1

2
|sA − sB, s̄A − s̄B|

=
1

2
(|sA, s̄A|+ |sB, s̄B|)−

1

2
(|sA, s̄B|+ |sB, s̄A|)

=
1√
2

(

Ψionic
(0,0) −Ψcovalent

(0,0)

)

. (3.85)

Apparently the correct dissociation limit requires the linear combination,

1√
2

(
Ψ1

(0,0) −Ψ2
(0,0)

)
= Ψcovalent

(0,0) , (3.86)

as R → 0. Note that (0,0)Ψcovalent is the Heitler-London [valence-bond (VB)] wave function,

Ψcovalent
(0,0) =

[
1√
2
(sA(1)sB(2) + sB(1)sA(2))

] [
1

2
(α(1)β(2)− β(1)α(2))

]

. (3.87)

As neither the näıve MO wave function nor the näıve VB wave function are correct at all R, but
the MO wave function is best near the equilibrium geometry and the VB wave function is best near
dissociation, then the recommended choice is to take a linear combination,

Ψ(0,0) = C1Ψ
1
(0,0) − C2Ψ

2
(0,0)

= CionicΨ
ionic
(0,0) + CcovalentΨ

covalent
(0,0) , (3.88)

with R-dependent coefficients whose values should be determined variationally. Equation (3.88) is
an example of a configuration-interaction (CI) wave function. CI wave functions are often necessary
for describing chemical reactions because, by taking a geometry-dependent linear combination of the
product and reactant wave functions, the CI wave function provides a smooth interpolation along
the chemical reaction pathway.
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3.2.5 Symmetry Breaking and Spin Contamination

Up until now, we have considered only spin-restricted wave functions with the same orbitals for
different spin (SODS.) Let us now consider spin-unrestricted wave functions with different orbitals
for different spin (DODS.) Let us write the orbitals as,

σ1 =

√
C1

C1 + C2
σg +

√
C2

C1 + C2
σu

σ2 =

√

C1

C1 + C2
σg −

√

C2

C1 + C2
σu . (3.89)

Then

ΨCI
(0,0) =

C1 + C2

2
(|σ1, σ̄2|+ |σ2, σ̄1|)

=
1

2

(

|
√

C1σg +
√

C2σu,
√

C1σ̄g −
√

C2σ̄u|+ |
√

C1σg −
√

C2σu,
√

C1σ̄g +
√

C2σ̄u|
)

= C1|σg, σ̄g| − C2|σu, σ̄u| , (3.90)

which is one of the forms of the CI wave function in Eq. (3.88). Around the equilibrium geometry,
the lower energy determinant dominates,

R = Req : (C1, C2) ≈ (1, 0) , (3.91)

while in the limit of ground-state dissociation,

R → ∞ : (C1, C2) = (
1√
2
,
1√
2
) . (3.92)

Symmetry breaking consists of using a single-determinantal DODS wave function which I will write
as,

Ψbroken = |σ1, σ̄2|

=
1

C1 + C2
|
√

C1σg +
√

C2σu,
√

C1σ̄g −
√

C2σ̄u|

=
1

C1 + C2

(C1|σg, σ̄g| − C2|σu, σ̄u|)

+

√
2C1C2

C1 + C2

[
1√
2
(|σu, σ̄g + |σg, σ̄u|)

]

=
1

C1 + C2
ΨCI

(0,0) +

√
2C1C2

C1 + C2
Ψ(1,0) . (3.93)

As long as the symmetry unbroken (SODS) solution is the lower variational solution, then (C1, C2) =
(1, 0) and Ψbroken = |σg, σ̄g|. This happens for R < RCF where RCF is the Coulson-Fischer point
(or more exactly, bond distance). For R > RCF , the broken-symmetry (DODS) solution is the lower
energy variational solution. As can be seen in Eq. (3.93), the DODS solution is contaminated by a
triplet component (Ψ(1,0).) This has two consequences: For the energy,

Ebroken =
ECI(0,0) + 2C1C2E(1,0)

(C1 + C2)
2 . (3.94)
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We may also investigate spin contamination by calculating,

〈Ψbroken|Ŝ
2|Ψbroken〉 =

4C1C2

(C1 + C2)
2 . (3.95)

In the R → ∞ limit, where (C1, C2) = (1/
√
2, 1/

√
2),

Ebroken =
ECI(0,0) + E(1,0)

2

〈Ψbroken|Ŝ
2|Ψbroken〉 = 1 . (3.96)

In practice the broken symmetry energy is better than this last equation may make it appear as both

ECI(0,0) and E(1,0) tend towards the energy of two separated hydrogen atoms (i.e., 2 Ha.) However

〈Ŝ2〉 = 0 for a true singlet. Hence spin contamination is a problem after the Coulson-Fischer point.
While the DFT wave function is generally assumed to be single determinantal, a broken symmetry

single determinantal wave function is sometimes an eigenfunction of Ŝ2 or, at least, not very far from
being one. This is why it is important to be able to calculate the expectation value of Ŝ2 for a DODS
determinant. The basic equation for doing so was worked out by Löwdin in the text of Hartree-Fock
theory [115] and is easily obtained using second quantization [116]. The result is,

〈Ŝ2〉 =
(
n↑ − n↓

2

)(
n↑ − n↓

2
+ 1

)

−
occupied
∑

i,j

|∆i,j|2 . (3.97)

Here ∆ is the spin-similarity matrix which is defined as the overlap between the spatial parts of the
spin α and spin β orbitals which I will write as,

∆r,s = 〈r|Ŝ+|s̄〉 . (3.98)

This is the same as

∆r,s =

∫

ψ∗
r(~r)ψs(~r) d~r , (3.99)

where ψr is the spatial part of the rth spin α orbital and ψs is the spatial part of the sth spin β
orbital.

An approximate way to remove spin-contamination using 〈Ŝ2〉 is given in Ref. [117]. In the present
context this amounts to solving the equations,

Ψbroken =
√
1− C2Ψ(0,0) + CΨ(1,0)

Ebroken =
(
1− C2

)
E(0,0) + C2E(1,0)

〈Ŝ2〉broken =
(
1− C2

)
〈Ŝ2〉(0,0) + C2〈Ŝ2〉(1,0) = 2C2 , (3.100)

to obtain,

E(0,0) =
2Ebroken − 〈Ŝ2〉broken 3E

2− 〈Ŝ2〉broken
, (3.101)

where 3E = E(1,0) is the triplet energy. While this seems like a very good idea, there is a serious
problem — namely where to get the 3E energy! Ideally the Ψ(0,0) and Ψ(1,0) are close to being exact,
which means that the value used for 3E should also be close to being exact. Usually however accessi-
ble values of 3E are upper limits to the exact value, which means that E(0,0) will be underestimated
(i.e., too low in energy)! This actually prevents this type of spin projection from being very useful.
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3.2.6 Exercise

Calculate the DODS and SODSMS = 0 andMS = 1 potential energy curves and spin-contamination
for H2 at the different bond distances given in Table 3.1 for the LDA, BLYP, B3LYP, and HF DFAs.
Find the location of the Coulson-Fischer point for each functional. Use Eq. (3.101) to remove spin-
contamination from the energy. Discuss.

There are a few complications which enter into this work, the biggest of which is that symmetric
guesses lead to symmetric orbitals and so make symmetry breaking difficult to impossible. In order
to surmount this problem, we will have to use some tricks. This involves using restart files. You will
need to modify the run shell to be the following:

#!/bin/csh

# The previous line indicates that this is a C-shell file

# -------------------------------------------------------

# Program to run deMon in the present working directory.

# To use: Create an input file with the name xxx.inp where

# xxx can be anything. Execute with

# /home/mcasida/ENGINEERING/workbook/examples/run.csh xxx

# The job runs interactively in foreground.

# -------------------------------------------------------

set xxx = $1

echo "Input file "$xxx.inp

set PWD = ‘pwd‘

echo "The present working directory is "$PWD

set deMon_root = /home/mcasida/ENGINEERING/workbook/deMon # location of deMon files

echo "Using directories and excecutables from "$deMon_root

#

# copy essential files to the present working directory

#

cp $deMon_root/BASIS $PWD # copy the BASIS file to the run directory

cp $deMon_root/AUXIS $PWD # copy the AUXIS file to the run directory

cp $deMon_root/binary $PWD/deMon.x # copy the executable to the run directory

cp $xxx.inp deMon.inp

if ( -f $xxx.rst ) then

cp $xxx.rst deMon.rst

else

echo No restart file

endif

#

# run deMon

#

./deMon.x

#

# clean up

\rm BASIS

\rm AUXIS

mv deMon.out $xxx.out

mv deMon.rst $xxx.rst
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\rm deMon.*

# -------------

# End of file

# -------------

The file with the “.rst” ending is the restart file.
Next, perform the following calculation:

TITLE H2

MULTI 1

CHARGE 0

#

SCFTYPE UKS TOL=1.E-8

# SCFTYPE UKS TOL=1.E-5

MOMODIFY 0 2

1 0.99

2 0.01

VXCTYPE VWN

#

DIIS OFF

# SYMMETRY OFF

#mec GUESS CORE

# GRID FIXED COARSE

#

# PRINT MOS

POPULATION MULLIKEN

#

# EFIELD 0.0 0.0 0.000000001

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

H 0.000000 0.000000 0.000000

H 0.000000 0.000000 4.300000

#

AUXIS (GEN-A3*)

BASIS (AUG-CC-PV5Z)

The MOMODIFY keyword is mixing 0.1 of the σ∗ = σu with the σ = σg orbital in order to break
symmetry. The answer does not make too much sense because of this mixing but provides the initial
guess that we will use at 4.2 bohr using the input file:

TITLE H2

MULTI 1

CHARGE 0

#

SCFTYPE UKS TOL=1.E-8

# SCFTYPE UKS TOL=1.E-5
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# MOMODIFY 0 2

# 1 0.99

# 2 0.01

VXCTYPE VWN

#

DIIS OFF

GUESS RESTART

#

POPULATION MULLIKEN

#

# EFIELD 0.0 0.0 0.000000001

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

H 0.000000 0.000000 0.000000

H 0.000000 0.000000 4.200000

#

AUXIS (GEN-A3*)

BASIS (AUG-CC-PV5Z)

This assumes that the file 4p3.rst has first been copied to 4p2.rst before running the job at 4.2 bohr.
This should give a broken symmetry result and a new restart file 4p2.rst which should be copied to
4p1.rst before running the next job at 4.1 bohr. In this manner, by gradually shortening the bond,
and using the restart file for the previous geometry where symmetry breaking has already occurred,
there should be no particular difficulties carrying out the symmetry broken UKS calculation. Another
thing to note is that the ROKS (restricted open-shell Kohn-Sham) keyword should be used to carry
out the SODS triplet calculation. However the total energy will be the same as for the UKS triplet
calculation.

It should be emphasized that UKS indicates spin-unrestricted DODS while replacing it with RKS

(or ROKS) indicates spin-restricted SODS. Also MULT 1 is a MS = 0 calculation while MULT 3 is a
MS = 1 calculation. Note that especially that the multiplicity keyword MULT does not always give
pure singlets in this case when symmetry breaking occurs. Thus UKS MULT 1 shows

REFERENCE VALUE OF S**2 FOR PURE SPIN STATE S(S+1): 0.0000

S**2 BEFORE SPIN PROJECTION: 0.7845

S**2 AFTER SPIN PROJECTION: 0.0000

The spin projection described here is that of Ref. [118] but it is not used by the program in the
energy calculation.
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Molecule No. Atoms No. Internal DOFs
H2 2 3× 2− 5 = 1
H2O 3 3× 3− 6 = 3
NH3 4 3× 4− 6 = 6
C6H

a
6 12 3× 12− 6 = 30

C6H12O
b
6 24 3× 24− 6 = 66

Cc60 60 3× 60− 6 = 174
a Benzene. b Glucose. c Buckminsterfullerene.

Table 3.2: Number of internal degrees of freedom for different molecules.

3.3 Lesson 5: Analytic Gradients and Geometry Optimiza-

tion

“May the force be with you.” — Star Wars

In the last few lessons, we have produced potential energy curves for H+
2 and for H2. Finding

the equilibrium geometry was a simple as finding the bond length that gave the minimum energy on
the graph. That works because there is only one degree of freedom (DOF). For a molecule with N
atoms, as each atom can be moved in three independent directions, there are 6N degrees of freedom
in configuration space (i.e., the space describing all the possible geometries of the molecule.) Three
of these are just trivial translations and another three (two for linear molecules) are rotations, so
that the total number of internal degrees of freedom is thus 3N − 6 (3N − 5 for a linear molecule.)
As shown in Table 3.2, that leaves only one internal DOF for a linear diatomic (the bond length.)
Also shown in the table is how fast the number of DOFs increases with the number of atoms. If you
want to plot the potential energy surface of the molecule, you will need an energy axis and 3N − 6
(3N −5) other coordinates to plot a 3N −6 (3N −5) dimensional hypersurface in a 3N −5 (3N −4)
hyperspace. For H+

2 and H2, an ordinary (x, y)-plot suffices, but the problem rapidly gets out of hand
for larger molecules and it is no longer practical to search for the minimum by hand. During the
1970s, quantum chemists developed analytic derivative methods [119, 120] for computing forces and
finding energy minima for a wide variety of electronic structure methods. This now allows us to do
routine calculations where stationary points on the potential energy surface are found from a guessed
geometry by minimizing the energy. The calculation of second derivatives (vibrational frequencies)
then allows the stationary point to be identified as a minimum (all real frequencies), a transition state
(exactly one imaginary frequency), or some higher-order stationary state. Although none of these
methods guarantees that a global minimum has been found, they do make it possible to find many
molecular configurations of fundamental interest and, with a little chemical intuition and/or help from
experiment, often do lead to accurate identification and characterization of a global minimum energy
structure. This is a somewhat technical section whose objective is to try to help you understand
what the program is doing when you ask it to optimize a geometry and hence to be able to use the
program properly to perform this task and to figure out what is going wrong should something not
go as expected. We will just focus on analytic derivatives with a little about geometry optimizations
and leave other more technical aspects (such as calculating frequencies, finding transition states, and
finding intrinsic reaction coordinates) for future lessons. Of course the connection between forces
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Figure 3.9: A model for methods development.

and geometry optimizations is that the q component of the force on the nuclei is

Fq = − ∂V

∂Rq
, (3.102)

where V = V (R) is the potential energy surface (PES) and Rq is the one of the (X, Y, Z) coordinates
of the one the nuclei. This means that we have a stationary point on the PES when all of the forces
are equal to zero.

At the risk of stating the obvious, I find the methods development model shown in Fig. 3.9 to be
very useful. Put yourself in the place of a pure theoretician and suppose that you want to develop a
method for calculating something, such as a new property needed to understand a new experimental
method. These days the end result will often be a program which can then run applications useful
for understanding the experiment. In practice, this involves at least three cycles to make an efficient
and reliable method. The key cycle for us is the development cycle which, itself, has three steps.
The first is our physical model which, in the case of finding minimum energy molecular structures,
is the notion of a molecular energy which varies as a function of the relative position of the atoms
(which makes sense provided we have made the Born-Oppenheimer approximation.) This has to
be reduced to a mathematical formalism which tells us how to calculate this energy as a function
of molecular position. For us, this follows from wave function theory and from density-functional
theory. However, most of the time, the mathematical formalism will involve equations which must
be solved numerically. Hence a choice of numerical method is needed. This involves approximations
which are, in principle, purely numerical and which allow us to approach the exact mathematical
formalism provided we are able to put in more numerical effort. An example is the use of a finite
basis set expansion for the wave function. Once everything is worked out and programmed, the
method must still be tested and, if found to be useful, optimized and documented. Of course, very
often problems are found which can send us back to the development cycle. I find that Fig. 3.9,
while somehow rather obvious, is also highly useful as a reminder that we need to be clear at every
moment in what we are doing where we are on this diagram when developing a method.
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3.3.1 Variational Calculus

Functional derivatives allow a compact and elegant way to discuss the analytic derivative problem.
They were already introduced in Sec. 2.2. This is the topic of variational calculus about which entire
books have been written (e.g., Ref. [33].) Fortunately we need not go into much detail beyond a little
review of what was already introduced in Sec. 2.2.

The reader is undoubtedly familiar with regular derivatives dF/df of functions of a single variable
F (f) and has probably encountered the notion of a differential,

dF =
dF

df
df , (3.103)

where dF and df refer to infinitessimal variations. Very often we encounter functions of more than
one variable F (~f) where I have grouped all of the variables into a single vector ~f = (f1, f2, · · · , fn).
The differential is then,

dF =
∑

i=1,n

∂F

∂fi
dfi . (3.104)

The indices i are, of course, discrete. But suppose they were not! Suppose instead that they were
continuous like the numbers x on the real number line. Then, instead of talking about F (~f), we
would be talking about F [f ] where f = f(x). The square bracket notation is a reminder that F is a
functional — i.e., a function of a function. Note that it would actually be incorrect to write F [f(x)]
as this would imply that F depended only upon f evaluated at the single point x, whereas F [f ] tells
us that F depends upon f at all values of x. (This incorrect notation is used far too often in the
literature and should be strongly discouraged!) The corresponding differential form is written,

δF =

∫
δF

δf(x)
dx . (3.105)

The sum in Eq. (3.104) has been replaced by an integral as is expected for a continuous variable.
Note the distinction between the three types of differentials d, ∂, and δ. Nevertheless they often
behave in very similar ways (albeit with occasional important differences [33].)

Now let us apply the calculus of variations to a practical problem. The variational principle tells
us that,

E0 ≤ 〈Ψ|Ĥ|Ψ〉 =
∫

Ψ∗ĤΨ , (3.106)

subject to the normalization condition,

1 = 〈Ψ|Ψ〉 =
∫

Ψ∗Ψ . (3.107)

(I have suppressed the differential in the integral as is often done in informal writing among theorists.
I am trusting that this will not cause confusion. I will put it back in when it seems important.) We
may solve the minimization problem with the method of Lagrange multipliers by minimizing,

L[Ψ,Ψ∗] = 〈Ψ|Ĥ|Ψ〉 −W (〈Ψ|Ψ〉 − 1) =

∫

Ψ∗ĤΨ−W

(∫

Ψ∗Ψ− 1

)

. (3.108)

The corresponding differential

δL[Ψ,Ψ∗] = L[Ψ + δΨ,Ψ∗ + δΨ∗]− L[Ψ,Ψ∗]

=

∫

δΨ∗
(

Ĥ −W
)

Ψ+

∫

Ψ∗
(

Ĥ −W
)

δΨ

=

∫

δΨ∗
(

Ĥ −W
)

Ψ++

∫ [(

Ĥ −W ∗
)

Ψ
]∗

δΨ (3.109)
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is zero at a minimum. As the two variations, δΨ and δΨ∗, are independent, we have (over range of
the integration) that,

(

Ĥ −W
)

Ψ = 0
(

Ĥ −W ∗
)

Ψ = 0 , (3.110)

or just,

ĤΨ = WΨ

ĤΨ = W ∗Ψ . (3.111)

We recognize that these are just the time-independent Schrödinger equation and thatW is the energy.
Also W = W ∗ must be real valued. Probably most readers will have seen this derivation without
functional derivatives, so there is very little new here except the use of variational calculus instead
of more familiar calculus.

The method becomes more powerful when we have a variational energy functional E({ψi, ψ∗
i })

expressed in terms of orthonormal orbitals 〈ψi|ψj〉. This functional should be real valued, so that
E∗({ψi, ψ∗

i }) = E({ψi, ψ∗
i }) and it should also be unitarily invariant. A unitary matrix U is one

whose adjoint is its inverse,

U† = U−1

1 = UU† = U†U

δi,j =
∑

k

Ui,kU
†
k,j =

∑

k

U †
i,kUk,j

δi,j =
∑

k

Ui,kU
∗
j,k =

∑

k

U∗
k,iUk,j . (3.112)

We want E({ψi, ψ∗
i }) to be invariant under a unitary transformation of the occupied orbitals. When

this happens, we can normally rewrite E({ψi, ψ∗
i }) as E(γ), where

γ(1, 2) =
occ∑

i

ψi(1)ψ
∗
i (2) , (3.113)

is called the density matrix and its diagonal element

ρ(1) = γ(1, 1) (3.114)

is the density. These conditions are very general as almost all types of density-functional theory only
depend upon the density-matrix.

[This terminology is confusing! It might be better to call

γ̂ =
∑

i

|ψi〉ni〈ψi| (3.115)

the density operator where ni is the occupation number of the orbital ψi. Then γ(1, 2) is the kernal
of the density operator, defined by

γ̂ϕ(1) =

∫

γ(1, 2)ϕ(2) d2 , (3.116)
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for an arbitrary function ϕ. Given a (non-orthonormal) discrete basis set {χµ}, it might seem natural
to define the density matrix as

γµ,ν = 〈χµ|γ̂|χν〉 , (3.117)

but quantum chemists generally prefer to define the density matrix in this basis as

P = S−1γS−1 , (3.118)

where

Sµ,ν = 〈χµ|χν〉 (3.119)

is the overlap matrix for the basis set (and P is a capital ρ, for density.) Clearly P = γ for an
orthormal basis set (S = 1.) For better or for worse, these three quantities (the operator γ̂, the
kernel γ(1, 2), and the matrix P) are traditionally (even if sloppily) all called “the density matrix.”]

Unitary invariance means that the density matrix is invariant under a unitary transformation of
the occupied orbitals,

ψ̃i =
∑

j

ψjUj,i . (3.120)

It is then easy to show unitary invariance:

γ(1, 2) =
∑

i

ψ̃i(1)ψ̃
∗(2)i

=
∑

i

(
∑

j

ψj(1)Uj,i

)(
∑

k

ψk(2)Uk,i

)∗

=
∑

j,k

ψj(1)

(
∑

k

Uj,iU
∗
k,i

)

ψ∗
k(2)

=
∑

j,k

ψj(1)δj,kψ
∗
k(2)

=
∑

j

ψj(1)ψ
∗
j (2)

=
∑

i

ψi(1)ψ
∗
i (2) . (3.121)

Let us now return to the problem of minimizing the E({ψi, ψ∗
i }) subject to the orthonormality

constraint 〈ψi|ψj〉 = δi,j . This is typically done with the method of Lagrange multipliers and will

lead to an orbital Schrödinger equation with hamiltonian ĥ defined by

niĥψi(1) =
δE

δψ∗
i (1)

=
δE∗

δψ∗
i (1)

(3.122)

(because E = E∗ is real valued.) [The reader will find a small exercise to do below which should
help to clarify any mysteries surrounding Eq. (3.122).] The Lagrangian is

L({ψi, ψ∗
i }) = E({ψi, ψ∗

i })−
∑

k,j

√
njǫj,k

√
nk

(∫

ψ∗
k(1)ψj(1) d1− δk,j

)

. (3.123)
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The corresponding differential is

δL({ψi, ψ∗
i }) =

∑

j

∫
(

δE({ψi, ψ∗
i })

δψj(1)
−
∑

k

√
njǫj,k

√
nkψ

∗
k(1)

)

δψj(1) d1

+
∑

k

∫
(

δE({ψi, ψ∗
i })

δψ∗
k(1)

−
∑

j

ψj(1)
√
njǫj,k

√
nk

)

δψ∗
k(1) d1

=
∑

j

∫
(

δE∗({ψi, ψ∗
i })

δψ∗
j (1)

−
∑

k

ψk(1)
√
nkǫ

†
k,j

√
nj

)∗

δψj(1) d1

+
∑

k

∫
(

δE({ψi, ψ∗
i })

δψ∗
k(1)

−
∑

j

ψj(1)
√
njǫj,k

√
nk

)

δψ∗
k(1) d1

=
∑

j

∫
(

njĥψj(1)−
∑

k

ψk(1)
√
nkǫ

†
k,j

√
nj

)

∗ δψj(1) d1

+
∑

k

∫
(

nkĥψk(1)−
∑

k

ψj(1)
√
njǫj,k

√
nk

)

δψ∗
k(1) . (3.124)

As the variations over the δψj and over δψ∗
j are independent, we arrive at

niĥψi(1) =
∑

j

ψj(1)
√
njǫj,i

√
ni

niĥψi(1) =
∑

j

ψj(1)
√
njǫ

†
j,i

√
ni . (3.125)

If we are only interested in occupied orbitals, then we can set the occupation numbers equal to unity
to get

ĥψi(1) =
∑

j

ψj(1)ǫj,i

ĥψi(1) =
∑

j

ψj(1)ǫ
†
i,j , (3.126)

which shows that

ǫj,i = ǫ†i,j

ǫ = ǫ† . (3.127)

Since E({ψi, ψ∗
i }) was chosen to be unitarily invariant, we may use this degree of freedom to chose

canonical orbitals which diagonalize the ǫ matrix. This finally gives the sought-after orbital equation,

ĥψi(1) = ǫiψi(1) . (3.128)

3.3.2 Mathematical Formalism and the Hellmann-Feynman Theorem

In order to calculate forces, we first need a mathematical formalism. This is provided by first
making the Born-Oppenheimer separation of electronic and nuclear degrees of freedom and solving
the Schrödinger equation for the many-electron problem within the field of the fixed nuclei,

Ĥ(R)Ψ(R) = E(R)Ψ(R) , (3.129)
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where

R = (~R1, ~R2, ..., ~RN)

~Rq =





Xq

Yq
Zq



 (3.130)

are the nuclear coordinates. (Note that R is a 3 × N matrix, consisting of N column vectors, each
of length 3.) In addition, we will require that the wave function is normalized,

〈Ψ(R)|Ψ(R)〉 = 1 . (3.131)

Note that the notation 〈· · · 〉 refers only to integration over electron coordinates! Then

E(R) = 〈Ψ(R)|Ĥ(R)|Ψ(R)〉 , (3.132)

and the potential energy surface (PES) V (R) is,

V (R) = E(R) + VN,N(R) , (3.133)

where

VN,N(R) =
∑

I,J

ZIZJ
RI,J

(3.134)

is the potential energy in Hartree atomic units (i.e., Gaussian electromagnetic units with me = e =
~ = 1) due to the repulsion between nuclei. The Rq component of the force is given by Eq. (3.102).
So this is what we want to calculate. In order to make the formalism ever so slightly more general,
I am going to replace Rq with ξ in order to include such things as the strength of an applied field,
because the formalism that I am about to present may also be used to calculate not just forces but
also such things as dipole moments which are derivatives of the energy with respect to the strength
of an applied electric field.

Thus we want to calculate,

dV

dξ
= 〈dΨ

dξ
|Ĥ|Ψ〉+ 〈Ψ|dĤ

dξ
|Ψ〉+ 〈Ψ|Ĥ|dΨ

dξ
〉+ dVN,N

dξ
. (3.135)

We may now use Eq. (3.129) to rewrite this last equation as,

dV

dξ
= 〈Ψ|dĤ

dξ
|Ψ〉+ dVN,N

dξ
+ E

(

〈dΨ
dξ

|Ψ〉+ 〈Ψ|dΨ
dξ

〉
)

= 〈Ψ|dĤ
dξ

|Ψ〉+ ∂VN,N
∂ξ

+ E
d〈Ψ|Ψ〉
dξ

. (3.136)

However, because the wave function is normalized [Eq. (3.131)], the last term vanishes and we arrive
at just

dV

dξ
= 〈Ψ|dĤ

dξ
|Ψ〉+ dVN,N

dξ
. (3.137)

This is the celebrated Hellmann-Feynman theorem [121, 122, 123, 124]. In the case of forces, it
becomes

∂V

∂Rq

= 〈Ψ|∂VN,e
∂Rq

|Ψ〉+ ∂VN,N
∂Rq

, (3.138)
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where

VN,e = −
∑

I,i

ZI

|~RI − ~ri|
(3.139)

is the electron-nucleus attraction potential energy term. Voilà for the wave function case!
In DFT, the energy expression is E({ψi, ψ∗

i }, η). Let us introduce a special notation for the
derivative of the PES when the orbitals are held constant,

V (ξ) =

(
∂V

∂ξ

)

{ψi,ψ∗

i }

. (3.140)

(Be careful! Later I will use the notation V ξ 6= V (ξ). I have deliberately made the notations similar,
but different, because they describe similar, but different, concepts.) Then

dV

dξ
= V (ξ) +

∑

i

∫
δE

δψi(1)

∂ψi(1)

∂ξ
d1 +

∑

i

∫
δE

δψ∗
i (1)

∂ψ∗
i (1)

∂ξ
d1

= V (ξ) +
∑

i

∫ (
δE

δψ∗
i (1)

)∗
∂ψi(1)

dξ
d1 +

∑

i

∫
δE

δψ∗
i (1)

∂ψ∗
i (1)

dξ
d1

= V (ξ) +
∑

i

∫ (

niĥψi(1)
)∗ ∂ψi(1)

∂ξ
d1 +

∑

i

∫ (

niĥψi(1)
) ∂ψ∗

i (1)

∂ξ
d1 . (3.141)

Using the eigenfunction condition of Eq. (3.128) gives,

dV

dξ
= V (ξ) +

∑

i

ni〈ψi|ĥ|
∂ψi
∂ξ

〉+
∑

i

ni〈
∂ψi
∂ξ

|ĥ|ψi〉

= V (ξ) +
∑

i

niǫi

(

〈〈ψi|
∂ψi
∂ξ

〉+ 〈∂ψi
∂ξ

|ψi〉
)

= V (ξ) +
∑

i

niǫi
∂〈ψi|ψi〉
∂ξi

= V (ξ) +
∑

i

niǫi
1

∂ξi

= V (ξ) . (3.142)

This proves the Hellmann-Feynman theorem for DFT (and Hartree-Fock, which may be regarded as
a particular DFA.) In particular, the force equation is

∂V

∂Rq
=
∑

i

ni〈ψi|
∂VN,e
∂Rq

|ψi〉+
∂VN,N
∂Rq

. (3.143)

3.3.3 Numerical Method and Pulay Forces

Many quantum chemistry programs, including deMon2k, are based upon expanding the molecular
orbitals (MOs) ψi as a linear combination of atom-centered “atomic orbitals” (AOs) χµ,

ψi(1) =
∑

µ

χµ(1)Cµ,i . (3.144)
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This is sometimes called the LCAO approximation where LCAO stands for “linear combination of
atomic orbitals.” However, as discussed in Sec. 2.1, these AOs are not really AOs but just atom-
centered basis functions. (Note the use of the common convention that the MOs have Latin labels
but the AOs have Greek labels.) The orbital Schrödinger equation [Eq. (3.128)] then becomes the
matrix pseudo-eigenvalue problem,

H ~Ci = ǫiS ~Ci , (3.145)

and the energy expression involves the MO coefficients ~Ci and integrals over (real) atomic orbitals
such as the electron repulsion integral,

[χµχν ||χκχλ] = [µν||κλ] =
∫ ∫

χµ(1)χnu(1)
1

r12
χκ(2)χλ(2) d1d2 (3.146)

(in Mulliken charge-cloud notation.) It is important to understand the paradigm shift: It is now
the MO coefficients which play the role in this numerical method that the orbitals played in the
mathematical formalism. This effectively creates a parallel but different formalism. We may now
repeat the derivation of the analytic derivative of the PES in this formalism and we will see that a
new term appears. This new term is called the Pulay force [120] and arises because the AOs move
when the nuclei move.

Let us now turn to the problem of differentiating E[{Cµ,i}, {C∗
µ,i}, {χν}, {χ∗

ν}, ξ], which is just
the same as E[{ψi, ψ∗

i }, ξ], except that ψi is expanded in the LCAO approximation [Eq. 3.144]. It is
usually the case that the AOs and MO coefficients are real valued in quantum chemical calculations,
although there are exceptions. (NMR calculations involving magnetic fields are one case that springs
to mind where complex-valued orbitals are often used.) So E[{Cµ,i}, {C∗

µ,i}, {χν}, {χ∗
ν}, ξ] reduces to

E[{Cµ,i}, {χν}, ξ]. We will make this assumption because it leads to more compact equations without
any fundamental loss of understanding. However there will also be some factors of two which come
from the equivalence of derivatives with respect to the variable and its complex conjugate. The
energy is thus an equation involving MO coefficients and integrals expressed over AOs.

Taking the derivative of the integrals only leads to so-called skeleton terms. Let us make this
more precise. We will introduce the notation V ξ which means something different from the notation
V (ξ) earlier introduced, but which provides a better reflection of the paradigm shift in our point of
view. Given an arbitrary quantity A, then

Aξ =

(
∂A

∂ξ

)

{Cµ,i}

. (3.147)

This is a skeleton term. It means that include only derivatives of AO integrals with respect to ξ,
including any constant terms (i.e., trivial “integrals.”) This is very convenient within the context of
our numerical method. The relation with our previous notation is that,

dA

dξ
=

(
∂A

∂ξ

)

{Cµ,i},{χµ}
︸ ︷︷ ︸

A(ξ)

+
∑

ν

∫ (
δA

δχν(1)

)

{Cµ,i}

∂χν(1)

∂ξ
d1 +

∑

µ,i

(
∂A

∂Cµ,i

)

{χν}

∂Cµ,i
∂ξ

= A(ξ) +
∑

ν

∫ (
δA

δχν(1)

)

{Cµ,i}

∂χν(1)

∂ξ
d1

︸ ︷︷ ︸

Aξ

+
∑

µ,i

(
∂A

∂Cµ,i

)

{χν}

∂Cµ,i
∂ξ

= Aξ +
∑

µ,i

(
∂A

∂Cµ,i

)

{χν}

∂Cµ,i
∂ξ

. (3.148)
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Let us specialize to the case of the electronic energy. Then the last term may be transformed,

∑

µ,i

(
∂E

∂ψi(1)

)

{χν}

∂Cµ,i
∂ξ

=
∑

µ,i

(∫
δE

δψi(1)

∂ψi(1)

∂Cµ,i
d1

)

{χν}

∂Cµ,i
∂ξ

= 2
∑

µ,i

ni

∫

χµ(1)ĥψi(1)
∂Cµ,i
∂ξ

= 2
∑

i

ni

∫
(
∑

µ

χµ(1)
∂Cµ,i
∂ξ

)

ĥψi(1) d1 . (3.149)

(The factor of two is because the derivatives with respect to ψ∗
i and with respect to ψi are the same

when working with real functions.) The last term in parentheses in Eq. (3.149) is usually rewritten
as

∑

ν

χν(1)
∂Cν,j
dξ

=
∑

i

ψi(1)U
ξ
i,j , (3.150)

because it is often more convenient to work in the MO representation rather than in the AO rep-
resentation. Note that the Uξ is not a skeleton term. Rather they are referred to as the coupled
perturbed coefficients.

The coupled perturbed coefficients are important enough that they are worth studying in more
detail. I will temporarily allow the wave functions to be complex-valued because it does not com-
plicate the notation much and does increase the rigor. Left multiplying Eq. (3.150) by ψ∗

k(1) and
integrating (“multigrating”) gives

∑

ν

〈ψk|χν〉
∂Cν,j
∂ξ

= U ξ
k,j , (3.151)

because of 〈ψi|ψj〉 = δi,j. But

〈ψk|χν〉 =
∑

µ

C∗
µ,kSµ,ν . (3.152)

Hence we finally obtain,

U ξ
k,j =

∑

µ,ν

C∗
µ,kSµ,ν

∂Cν,j
∂ξ

Uξ = C†S
∂C

∂ξ
(3.153)

Of course,

U ξ,∗
k,j =

∑

µ,ν

Cµ,kS
∗
µ,ν

∂C∗
ν,j

∂ξ
=
∑

µ,ν

∂C∗
ν,j

∂ξ
Sν,µCµ,k . (3.154)

Another important relation is something that I call the turn-over rule. (A†
i,j = A∗

j,i which defines
the adjoint of an operator is also known as the turn-over rule.) The turn-over rule is obtained by
differentiating the orthonormality condition,

δi,j = 〈ψi|ψj〉 =
∑

µ,ν

C∗
µ,iSµ,νCν,j . (3.155)
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Then

0 =
∂δi,j
∂ξ

=
∑

µ,ν

∂C∗
µ,i

∂ξ
Sµ,νCν,j +

∑

µ,ν

C∗
µ,i

∂Sµ,ν
∂ξ

Cν,j +
∑

µ,ν

C∗
µ,iSµ,ν

∂Cν,j
∂ξ

= U ξ,∗
j,i + Sξi,j + U ξ

i,j . (3.156)

So
U ξ,∗
j,i = −U ξ

i,j − Sξi,j , (3.157)

which is the sought-after turn-over rule for the coupled perturbed coefficients. The diagonal case is
particularly important,

ℜU ξ
i,i = −1

2
Sξi,i . (3.158)

We will now return to real functions, so

U ξ
i,i = −1

2
Sξi,i . (3.159)

We may now return to the energy derivative. Equation (3.149) now reads,

V ξ
P =

∑

µ,i

(
∂E

∂ψi(1)

)

{χν}

∂Cµ,i
∂ξ

= 2
∑

i

ni

∫
(
∑

j

ψj(1)U
ξ
j,i

)

ĥψi(1) d1

= 2
∑

i

ni
∑

j

U ξ
j,i〈ψj |ĥ|ψi〉

= 2
∑

i

niǫiU
ξ
i,i

= −
∑

i

niǫiS
ξ
i,i

= −
∑

µ,ν

∑

i

Cµ,iniǫiCν,i

︸ ︷︷ ︸

Wµ,ν

Sξν,µ

= −tr
(
WSξ

)
. (3.160)

(Notice that Sξ could refer either to derivatives in the AO or MO representation. Here it refers to
the AO representation.) V ξ

P is the Pulay force V ξ
P which must be added to V ξ to get dV/dξ. The

quantity,

Wµ,ν =
∑

i

Cµ,iniǫiCν,i (3.161)

is the energy-weighted density matrix. Notice that this expression for V ξ
P depends on having a well-

converged self-consistent field (SCF) calculation so that the canonical MOs diagonalize the orbital
hamiltonian matrix. The final force equation reads

∂V

∂Rq

= V Rq + V
Rq

P . (3.162)
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Figure 3.10: Comparison of the Morse potential (shifted down by 1 Ha) with the high-quality results
of Refs. [106, 125]. Parameters: Re = 1.4 bohr, De = 0.174442 Ha, and a = 1.05103/bohr.

We will explore the question of how well the SCF needs to be converged to have accurate forces in
the exercise section below. Notice also that we never actually have to solve for the coupled perturbed
coefficients, but rather we must take derivatives of the overlap matrix, a “simple” skeleton term. This
is good because solving for the coupled perturbed coefficients can become quite involved.

3.3.4 Walking on the Potential Energy Surface

We know know how the PES V (R) is calculated and how its analytic derivatives V ′(R) are calculated.
This means that we should be able to develop an algorithm for finding stationary points on the PES.
In general this means starting from an initial guess for the structure of the molecule and then walking
(this is a useful but nontechnical term) in a directed way towards the expected position of a stationary
point, and back tracking if necessary if we accidently walk past it. Such an algorithm is (at least
informally) called a (PES) walker. We will discuss one possible walker in the context of searching
for the minimum energy geometry Re on the H2 potential energy curve.

Let us start out with something concrete, namely the Morse potential approximation to the
potential energy curve of a diatomic: [126]

V (R) = Dee
−a(R−Re)

(
e−a(R−Re) − 2

)

= De

[
a2(R −Re)

2 − 1
]
+ HOT , (3.163)

where “HOT” stands for “higher-order terms.” The Morse potential has several advantages, including
that the vibrational Schrödinger equation is analytically solvable. Here we are only interested in the
Morse potential as a convenient “generic” potential energy curve. The Taylor’s expansion around Re

shows that De is the binding energy. Also

V ′(R) = 2aDee
−a(R−Re)

(
1− e−a(R−Re)

)

= De2a(R− Re) + HOT , (3.164)

and

V ′′(R) = 2a2Dee
−a(R−Re)

(
2e−a(R−Re) − 1

)

= 2a2De + HOT . (3.165)
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Figure 3.11: Morse potential and its first two derivatives. Parameters: Re = 1.4 bohr, De =
0.174442 Ha, and a = 1.05103/bohr.
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Figure 3.12: Newton’s algorithm for finding stationary points of V (R) by finding zeros of V ′(R).

Figure 3.10 shows how well the Morse potential fits high-quality potential energy curves for H2.

Figure 3.11 shows the Morse potential V (R), its first derivative V ′(R), and its second derivative
V ′′(R). As expected, V ′(R) = 0 where V (R) is a minimum. Also V ′′(R) = 0 where V ′(R) has a
maximum.

In general in quantum chemistry, second derivatives are more costly to compute than first deriva-
tives so many walkers often restrict themselves to using first derivatives (and approximate second
derivatives.) Our strategy will be to create an algorithm that begins with an initial value R = R0

and then goes through a succession of values R1, R2, · · · to find where V ′(R) = 0 to within some
predetermined convergence factor. Newton’s method is a well-known numerical algorithm to find
the zeros of a function. In this case we would need the second derivative V ′′(R), but it is still worth
thinking about. So suppose we have an initial value of the geometry R0. We can approximate V ′(R)
by the tangent line,

V ′(R) ≈ V ′(R0) + V ′′(R0)(R− R0). (3.166)

When this expression is set equal to zero, we have an equation whose solution provides a guess R1

as to the location of the root:

R1 = R0 −
V ′(R0)

V ′′(R0)
. (3.167)

Once R1 is found, then the same algorithm is used to find the next value R2, etc. Figure 3.12 gives
an idea of how this works. The initial guess is quite important as it can determine whether we
converge towards the minimum of V (R) or towards a maximum! We may also overstep the zero of
V ′(R) which is not a problem as long as we come back again to closer to the zero. But sometimes
the algorithm will take us farther and farther from the zero. In general, it is best not to extrapolate
too far so that we should actually use,

Ri+1 = Ri −min

[
V ′(Ri)

V ′′(Ri)
, sgn

(
V ′(Ri)

V ′′(Ri)

)

Rmax

]

, (3.168)

where sgn(f) = f/|f | is the sign function and Rmax is a maximum step size to make sure that we
do not go too far.

To be more realistic, we should not use the second derivative V ′′(R). Instead we begin with a
guess R0 and take a step R1 = R0 +∆R for some arbitrary but predetermined step size ∆R so that
we have two values of R to start our iterations: Ri = R0 and Ri+1 = R1. We may then solve the
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linear equations,

V ′(Ri) = mRi + b

V ′(Ri+1) = mRi+1 + b , (3.169)

to obtain

m =
V ′(Ri+1)− V ′(Ri)

Ri+1 − Ri

b = (V ′(Ri)− V ′(Ri+1))R0 . (3.170)

Solving gives,

Ri+1 =
V ′(Ri+1)Ri − V ′(Ri)Ri+1

V ′(Ri+1)− V ′(Ri)
, (3.171)

which is equivalent to Newton’s method with

V ′′(Ri) ≈
V ′(Ri+1)− V ′(Ri)

Ri+1 −Ri
. (3.172)

A little thought will show that, once we have at least three points, we can fit a parabola and have a
better approximation to the second derivative than the most primitive one given in Eq. (3.172). But
the objective here is not to present a complete and perfect algorithm for geometry optimizations but
rather to help the reader think through some of the considerations that go into building a walker. In
our simple-minded approach, Eq. (3.171) is then iterated until

|Ri+1 − Ri| < ǫ , (3.173)

where ǫ is some predetermined convergence criterion. Alternatively the the convergence criterion
may be directly on the force:

|V ′(Ri)| < ǫ . (3.174)

This completes our small discussion of walkers. We may now pass on to the exercises.

3.3.5 Exercises

These exercises are intended to remove some of the abstraction from the mathematical treatment
given above.

1. Functional Derivatives
It was promised after Eq. (3.122) to give you an exercise aimed at clarifying the hamiltonian
definition,

niĥψi(1) =
δE

δψ∗
i (1)

. (3.175)

Here then is that exercise. It is a pencil-and-paper exericise. Please use the functional derivative
formalism to take the functional derivatives δ/δψ∗

i and δ/δψ
∗
i of the generic global hybrid DFA

energy expression,

E =
∑

i

ni〈ψi|t̂+ v|ψi〉+
1

2

∫
ρ(1)ρ(2)

r1,2
d1d2− a

1

2

∫ |γ(1, 2)|2
r1,2

d1d2+ bEx[ρ] + cEc[ρ] . (3.176)



76CHAPTER 3. H+
2 ANDH2: FUNCTIONALS, POTENTIAL ENERGY CURVES, ANDGEOMETRY OPTIMIZA

Here a, b, and c are constants (ideally b = 1 − a but this is not always true in practice),
t̂ = −1

2
∇2 is the one-electron kinetic energy operator, v is the external potential (i.e., the

potential energy of attraction of the electrons to the nuclei and interaction with any applied
electric fields). Also the density,

ρ(1) =
∑

i

ni|ψi(1)|2 , (3.177)

and the density matrix,

γ(1, 2) =
∑

i

ψi(1)niψ
∗
i (2) . (3.178)

Note that Eq. (3.176) includes the Hartree-Fock approximation. What happens if we use a
Thomas-Fermi (like) expression where the kinetic energy term is replaced by a local functional:

TTF =
3

10

(
3π2
)2/3

∫

ρ5/3(~r) d~r , (3.179)

instead of,

Ts =
∑

i

ni〈ψi|t̂|ψi〉 ? (3.180)

2. SCF Convergence and Forces
When we are learning, the first thing we want to do is to make things work. However we are
not really done until we have pushed them to the breaking point and see how and when they
can fail1. The object of this exercise is to make graphs of both the potential energy curve and
the forces for H2 around the equilibrium bond length and to really zoom in on this region to
see how the correspondance works between the minimum of the potential energy curve and the
position of the zero of the gradient. Use the following input and vary the bond distance and
the convergence factor:

TITLE H2

#

# --- CHARGE AND MULTILICITY ---

CHARGE 0

MULTI 1

#

# --- CONTROL OPTIONS ---

#

SCFTYPE RKS TOL=1.E-5

OPTIMIZATION MAX=1

VXCTYPE BLYP

#

# --- GEOMETRY ---

#

GEOMETRY CARTESIAN BOHR

H 0.000000 0.000000 0.000000

1One of my doctoral students once remarked that, given a computer game, I would not just play it, but I would

always also try to make it fail!
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H 0.000000 0.000000 1.409800

#

# --- BASIS SETS ---

AUXIS (GEN-A3*)

BASIS (AUG-CC-PV5Z)

This asks for a single geometry optimisation step which is adequate to get the program to print
out the gradient:

RMSQ FORCE : 0.0001611 MAXIMUM : 0.0003000 CONVERGED :YES

MAX FORCE : 0.0001611 MAXIMUM : 0.0004500 CONVERGED :YES

The number you want is MAX FORCE = RMSQ FORCE (which are generally different, but which
are the same for H2.) What are the units? What about the sign?

Rather than tell you exactly what to do, I would like you to explore and discuss what you have
learned. However I will ask one question to think about: “How tight a convergence do you
need to get the bond distance accurage to, say, 5 significant figures?”

3. How Good a Guess Do We Need?
The very crude walker described above suggests that a geometry optimization that begins in a
region where V ′′(R) > 0 will diverge towards R = +∞. The walkers used in quantum chemistry
programs, such as deMon2k, are much more sophisticated than this and actually do converge
to the proper minimum. Please run the following job to see for yourself:

TITLE H2

#

# --- CHARGE AND MULTILICITY ---

CHARGE 0

MULTI 1

#

# --- CONTROL OPTIONS ---

#

SCFTYPE RKS TOL=1.E-8

OPTIMIZATION

VXCTYPE BLYP

#

# --- GEOMETRY ---

#

GEOMETRY CARTESIAN BOHR

H 0.000000 0.000000 0.000000

H 0.000000 0.000000 3.600000

#

# --- BASIS SETS ---

AUXIS (GEN-A3*)

BASIS (AUG-CC-PV5Z)
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Chapter 4

Lesson 6: Singlet Oxygen, 1∆ O2

This lesson is dedicated to Abraham Ponra, without whose thesis project on reactive oxygen species
this lesson would not have been here.

Our atmosphere is about 80% N2 and 20% O2, both of which are important for life. Our focus
here is on oxygen — a very famous molecule! Until late in the 1700s, chemists still spoke of the
four elements — earth, fire, air, and water (and sometimes added the aether as a fifth element.)
This all changed with the discovery of “fixed air” (CO2) by Joseph Black in the 1750s, proving
that air was not an element because there are different types of “airs” (i.e., gases.) This opened a
veritable flood gate to the discovery of different gases during the era termed “pneumatic chemistry”
by historians of chemistry. Major among the new “airs” that were discovered was oxygen. While
assigning the priority of a discovery (what constitutes a “discovery” — an accidental synthesis without
the discoverer recognizing what he found? a full description of the significance of a new find? actually
making others aware of the find?) is always a tricky matter, most sources agree that oxygen was first
discovered in 1772 by the Swedish chemist Carl Wilhelm Scheele. It was independently discovered
by the English (later American) chemist Joseph Priestley in 1774 who was apparently the first to
note the physiological effect of O2.

“I have procured air ... between five and six times as good as the best common air that
I have ever met with.” — Joseph Priestley

Perhaps surprisingly to modern readers, chemistry was not yet a quantitative science. This was
changed by a contemporary of Priestley, namely the French chemist Antoine Laurent Lavoisier, who
famously said,

“Nothing is lost, nothing is created, everything is transformed.” — Antoine Lavoisier

Lavoisier used his very accurate scale (possibly the most accurate one in the world at that time) and
his mass conservation law to give birth to what historians of chemistry now call “modern chemistry.”
In particular, Lavoisier took it upon himself to re-examine Priestley’s discovery quantitatively. Now
we will take it upon ourselves to re-examine the electronic structure of O2 both qualitatively and
quantitatively using DFT.

4.0.1 Different Types of Oxygen

The lowest three potential energy curves for O2 are shown in Fig. 4.1. (See also Refs. [129, 130, 131].)
These are the 3Σ−

g ground state, the lowest 1∆g singlet state, and a higher 1Σ+
g excited state. We

want to work out the minimal configurations needed to describe these three states. Notice how these

79
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Figure 4.1: O2 potential energy curves from Fig. 1 of Ref. [127] digitized with WebPlotDigitizer
[128] and redrawn. The zero of energy is the vibrational zero-point energy of the ground state.

states are labeled with group theoretic term symbols. Like other homonuclear diatomics, O2 belongs
to the D∞h point group whose character table is shown in Table 4.1. Let us consider each of the
three states one at a time.

Triplet (3Σ−
g ) Oxygen The most common form of oxygen is the oxygen molecule, O2, in its triplet

state. Whether this is referred to as a diradical or not is a matter of taste. Whatever the terminology
that is used, it is important to realize that O2 is not especially reactive as radicals go. In particular,
it is kinetically rather stable [132]. Figure 4.2 summarizes what we learn in our first-year University
chemistry course about the electronic structure of O2. Although the Lewis dot structure seems to
indicate that all electrons are paired, molecular orbital theory shows that the ground state of O2 is,
in fact, a triplet (3O2). Nevertheless, the calculation of the bond order index still shows a double
bond. As I would like to avoid having to make a new figure each time I want to write a configuration,
I will type the electron configuration of triplet oxygen as

[ ] σ∗
p

π∗
x [↑ ] [↑ ] π∗

y

πx [↑↓] [↑↓] πy
[↑↓] σp
[↑↓] σ∗

s

[↑↓] σs
3Σ−

g

This term symbol should be determined by the symmetry point group of the molecule, which is D∞h

and whose character table is shown in Table 4.1, and by the part of the wave function outside of
the closed shell—hence by the determinant |π∗

x, π
∗
y|. The character table says that this wave function

should have the same symmetry as a rotation around the z axis (Rz). Let us check this. In order to
do so, we will need two symmetry operations, namely rotation by an angle φ around and reflection
through a vertical plane passing through the two nuclei and at an angle of φ to the x-axis. As for
Rz, the rotation should leave the wave function invariant (character +1) while the reflection should
change the sign of the wave function (character -1).
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Table 4.1: Character table for theD∞h point group of homonuclear diatomic molecules. The molecule
is assumed to lie along the z-axis.

D∞h E 2C∞ · · · ∞σv i 2S∞ · · · ∞C ′
2 functions

A1g = Σ+
g +1 +1 · · · +1 +1 +1 · · · +1 x2 + y2, z2

A2g = Σ−
g +1 +1 · · · -1 +1 +1 · · · -1 Rz

E1g = Πg +2 +2 cos(φ) · · · 0 +2 −2 cos(φ) · · · 0 (Rx, Ry), (xy, yz)
E2g = ∆g +2 +2 cos(2φ) · · · 0 +2 +2 cos(2φ) · · · 0 (x2 − y2, xy)
E3g = Φg +2 +2 cos(3φ) · · · 0 +2 −2 cos(3φ) · · · 0
Eng +2 +2 cos(nφ) · · · 0 +2 (−1)n2 cos(nφ) · · · 0
...

...
...

...
...

...
...

...
...

...
A1u = Σ+

u +1 +1 · · · +1 -1 -1 · · · -1 z, z3, z(x2 + y2)
A2u = Σ−

u +1 +1 · · · -1 -1 -1 · · · +1
E1u = Πu +2 +2 cos(φ) · · · 0 -2 +2 cos(φ) · · · 0 (x, y), (xz2, yz2),

[x(x2 + y2), y(x2 + y2]
E2u = ∆u +2 +2 cos(2φ) · · · 0 -2 −2 cos(2φ) · · · 0 [xyz, z(x2 − y2)]
E3u = Φu +2 +2 cos(3φ) · · · 0 -2 +2 cos(3φ) · · · 0 [y(3x2 − y2), x(x2 − 3y2)]
Enu +2 +2 cos(nφ) · · · 0 -2 (−1)n+12 cos(nφ) · · · 0
...

...
...

...
...

...
...

...
...

...

Figure 4.2: First-year University description of the electronic structure of O2: atomic or-
bital/molecular orbital correlation diagram, Lewis dot structure (upper left inset), and calculation
of the bond order index (BOI, upper right inset.)
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Let us begin with the rotation. Rotating the orbitals by φ in the positive (i.e., counter clockwise)
direction is equivalent to rotating the (x, y) coordinate system by φ in the negative (i.e., clockwise)
direction. Before rotation, we have

x = r cos θ

y = r sin θ . (4.1)

After rotation, we have

x′ = r cos(θ + φ) = r cos θ cosφ− r sin θ sinφ

= x cosφ− y sinφ

y′ = r sin(θ + φ) = r cos θ sinφ+ r sin θ cosφ

= x sinφ+ y cosφ . (4.2)

It is convenient to write this as (
x′

y′

)

= R(φ)

(
x′

y′

)

(4.3)

where the rotation matrix

R(φ) =

[
cosφ − sinφ
sin φ cosφ

]

. (4.4)

The inverse rotation is given by

R(−φ) =
[

cos φ sin φ
− sinφ cosφ

]

, (4.5)

as is easily checked by verifying that

R(φ)R(−φ) = 1 . (4.6)

Let us turn now to reflection through a line at a positive angle φ in the (x, y)-plane. If φ = 0,
then the line is just the x-axis and the transformation is,

x′ = x

y′ = −y . (4.7)

Let us write this as (
x′

y′

)

= σv(0)

(
x
y

)

, (4.8)

where

σv(0) =

[
1 0
0 −1

]

. (4.9)

To find the reflection matrix at an arbitrary angle, we can do an old group theoretician’s trick called
conjugation: we will first rotate by −φ to move the reflection line onto the x-axis, then we will reflect
through the x-axis, and finally we will undo the rotation to place the reflection line in its orginal
position. The new matrix is,

σv(φ) = R(φ)σv(0)R(−φ)

=

[
cosφ − sinφ
sinφ cosφ

] [
1 0
0 −1

] [
cosφ sinφ
− sin φ cosφ

]

=

[
cos2 φ− sin2 φ 2 cosφ sinφ
2 cosφ sinφ sin2 φ− cos2 φ

]

=

[
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]

. (4.10)
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Hence reflection through an arbrary σv plane gives,

x′ = x cos(2φ) + y sin(2φ)

y′ = x sin(2φ)− y cos(2φ) . (4.11)

We may see how the wave function |π∗
x, π

∗
y| transforms under rotation around the bond axis:

|π∗
x′, π

∗
y′ | = |π∗

x cosφ− π∗
y sinφ, π

∗
x sinφ+ π∗

y cosφ|
= |π∗

x, π
∗
x| cosφ sinφ+ |π∗

x, π
∗
y| cos2 φ− |π∗

y , π
∗
x| sin2 φ+ |π∗

y , π
∗
y| sinφ cosφ

= 0 + |π∗
x, π

∗
y| cos2 φ+ |π∗

x, π
∗
y| sin2 φ+ 0

= |π∗
x, π

∗
y|
(
cos2 φ+ sin2 φ

)

= |π∗
x, π

∗
y| . (4.12)

The wave function is indeed invariant with respect to a rotation around the z axis, consistent with
the +1 character in the 2C∞ column.

We may now see how the wave function |π̄∗
x, π̄

∗
y| changes upon reflection through an arbitrary σv

axis:

|π∗
x′, π

∗
y′ | = |π∗

x cos(2φ) + π∗
y sin(2φ), π

∗
x sin(2φ)− π∗

y cos(2φ)|
= |π∗

x, π
∗
x| cos(2φ) sin(2φ)− |π∗

x, π
∗
y| cos2(2φ) + |π∗

y , π
∗
x| sin2(2φ)− |π∗

y , π
∗
y| sin(2φ) cos(2φ)

= 0− |π∗
x, π

∗
y| cos2(2φ)− |π∗

x, π
∗
y| sin2(2φ) + 0

= −|π∗
x, π

∗
y|
(
cos2(2φ) + sin2(2φ)

)

= −|π∗
x, π

∗
y| , (4.13)

so the wave function changes sign upon arbitrary reflection through a mirror plane containing the
two nuclei. This is why there is a -1 character in the ∞σv column of the character table.

As everything seems to work fine for the spatial wave function, we now only need to recall that
every triplet is three-fold spin degenerate. That is, there are three wave functions, differing only by
the value of MS = −1, 0,+1 which have the same energy if we neglect any magnetic field effects.
These three ΨS,MS

wave functions are energetically degenerate because they factor into the same
antisymmetric spatial part times one of the three different possible symmetric spin parts:

Ψ1,1 = |π∗
x, π

∗
y|

=

[
1√
2

(
π∗
x(~r1)π

∗
y(~r2)− π∗

y(~r1)π
∗
x(~r2)

)
]

(α1α2)

Ψ1,0 =
1√
2

(
|π∗
x, π̄

∗
y|+ |π̄∗

x, π
∗
y|
)

=

[
1√
2

(
π∗
x(~r1)π

∗
y(~r2)− π∗

y(~r1)π
∗
x(~r2)

)
] [

1√
2
(α1β2 + β1α2)

]

=

[
1√
2

(
π∗
x(~r1)π

∗
y(~r2)− π∗

y(~r1)π
∗
x(~r2)

)
]

(α1α2)

Ψ1,−1 = |π̄∗
x, π̄

∗
y|

=

[
1√
2

(
π∗
x(~r1)π

∗
y(~r2)− π∗

y(~r1)π
∗
x(~r2)

)
]

(β1β2) . (4.14)

Here the overbar indicates spin β =↓ otherwise the spin function associated with the orbital is α =↑.
It is a bit of a puzzle how to represent these in MO diagrams. I suggest supplementing the multiplicity
2S + 1 = 3 with the value of MS, (2S + 1,MS):
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[ ] σ∗
p

π∗
x [↑ ] [↑ ] π∗

y

πx [↑↓] [↑↓] πy
[↑↓] σp
[↑↓] σ∗

s

[↑↓] σs
(3,1)Σ−

g

[ ] σ∗
p

π∗
x [↑ ][ ↓] π∗

y + π∗
x [ ↓][↑ ] π∗

y

πx [↑↓] [↑↓] πy
[↑↓] σp
[↑↓] σ∗

s

[↑↓] σs
(3,0)Σ+

g

[ ] σ∗
p

π∗
x [ ↓] [ ↓] π∗

y

πx [↑↓] [↑↓] πy
[↑↓] σp
[↑↓] σ∗

s

[↑↓] σs
(3,−1)Σ−

g

This emphasizes the multideterminantal nature of the (3,0)Σ−
g state.

For completeness we should verify what happens to Ψ1,0 under rotation and reflection. Rotation:

R̂(φ)Ψ1,0 =
1√
2

(
|π∗
x′ π̄

∗
y′ |+ |π̄∗

x′ π
∗
y′ |
)

=
1√
2

(
|π∗
x cosφ− π∗

y sinφ, π̄
∗
x sin φ+ π̄∗

y cosφ|+ |π̄∗
x cosφ− π̄∗

y sin φ, π
∗
x sinφ+ π∗

y cos φ|
)

=
1√
2

(
|π∗
x, π̄

∗
x| cosφ sinφ+ |π∗

x, π̄
∗
y| cos2 φ− |π∗

y , π̄
∗
x| sin2 φ− |π∗

y , π̄
∗
y| sinφ cosφ

)

+
1√
2

(
|π̄∗
x, π

∗
x| cosφ sinφ+ |π̄∗

x, π
∗
y| cos2 φ− |π̄∗

y , π
∗
x| sin2 φ− |π̄∗

y , π
∗
y| cosφ sinφ

)

=
1√
2

(
|π∗
x π̄

∗
y|+ |π̄∗

x π
∗
y|
)

= Ψ1,0 (4.15)
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Reflection:

σ̂v(φ)Ψ1,0 =
1√
2

(
|π∗
x′ π̄

∗
y′ |+ |π̄∗

x′ π
∗
y′ |
)

=
1√
2
|π∗
x cos(2φ) + π∗

y sin(2φ), π̄
∗
x sin(2φ)− π̄∗

y cos(2φ)|

+
1√
2
|π̄∗
x cos(2φ) + π̄∗

y sin(2φ), π
∗
x sin(2φ)− π∗

y cos(2φ)|

=
1√
2

(
|π∗
x, π̄

∗
x| cos(2φ) sin(2φ)− |π∗

x, π̄
∗
y| cos2(2φ) + |π∗

y , π̄
∗
x| sin2(2φ)− |π∗

y , π̄
∗
y| cos(2φ) sin(2φ)

)

+
1√
2

(
|π̄∗
xπ

∗
x| cos(2φ) sin(2φ)− |π̄∗

x, π
∗
y| cos2(2φ) + |π̄∗

y , π
∗
x| sin2(2φ)| − |π̄∗

y , π
∗
y| cos(2φ) sin(2φ)

)

= − 1√
2

(
|π∗
x, π̄

∗
y|+ |π̄∗

x, π
∗
y|
)

= −Ψ1,0 (4.16)

So the Ψ1,0 wave function does indeed transform according to the Σ−
g representation.

Singlet Sigma Oxygen There are two low-lying singlet excited states of oxygen, namely 1∆g and
1Σ+

g (Fig. 4.1.) Singlet oxygen usually refers to the lower-energy 1∆g state. However we will start
with the mathematically-simpler 1Σ+

g state here whose configuration is

[ ] σ∗
p

π∗
x [↑↓][ ] π∗

y + π∗
x [ ][↑↓] π∗

y

πx [↑↓] [↑↓] πy
[↑↓] σp
[↑↓] σ∗

s

[↑↓] σs
1Σ+

g

Notice that I have written this as a linear combination of two determinants. According to the
character table, this wave function should transform like x2 + y2. Its wave function is

Ψ =
1√
2

(
|π∗
x, π̄

∗
x|+ |π∗

y , π̄
∗
y|
)
. (4.17)

Let us check that it transforms correctly under rotation and reflection.
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Rotation:

R̂(φ)Ψ =
1√
2

(
|π∗
x′, π̄

∗
x′ |+ |π∗

y′, π̄
∗
y′ |
)

=
1√
2
|π∗
x cos φ− π∗

y sinφ, π̄
∗
x cosφ− π̄∗

y sin φ|

+
1√
2
|π∗
x sin φ+ π∗

y cosφ, π̄
∗
x sinφ+ π̄∗

y cos φ|

=
1√
2

(
|π∗
x, π̄

∗
x| cos2 φ− |π∗

x, π̄
∗
y| cosφ sinφ− |π∗

y , π̄
∗
x| cosφ sinφ+ |π∗

y , π̄
∗
y| sin2 φ

)

+
1√
2

(
|π∗
x, π̄

∗
x| sin2 φ+ |π∗

x, π̄
∗
y| cosφ sinφ+ |π∗

y , π̄
∗
x| cosφ sinφ+ |π∗

y , π̄
∗
y| cos2 φ

)

=
1√
2

(
|π∗
x, π̄

∗
x|+ |π∗

y , π̄
∗
y|
)

= Ψ (4.18)

Reflection:

σ̂v(φ)Ψ =
1√
2

(
|π∗
x′, π̄

∗
x′|+ |π∗

y′ , π̄
∗
y′ |
)

=
1√
2
|π∗
x cos(2φ) + π∗

y sin(2φ), π̄
∗
x cos(2φ) + π̄∗

x sin(2φ)|

+
1√
2
|π∗
x sin(2φ)− π∗

y cos(2φ), π̄
∗
x sin(2φ)− π̄∗

y cos(2φ)|

=
1√
2

(
|π∗
x, π̄

∗
x| cos2(2φ) + |π∗

x, π̄
∗
y| cos(2φ) sin(2φ) + |π∗

y , π̄
∗
x| cos(2φ) sin(2φ) + |π∗

y , π̄
∗
y| sin2(2φ)

)

+
1√
2

(
|π∗
x, π̄

∗
x| sin2(2φ)− |π∗

x, π̄
∗
y| cos(2φ) sin(2φ)− |π∗

y , π̄
∗
x| cos(2φ) sin(2φ) + |π∗

y , π̄
∗
y| cos2(2φ)

)

=
1√
2

(
|π∗
x, π̄

∗
x|+ |π∗

y , π̄
∗
y|
)

= Ψ (4.19)

Hence Ψ belongs to the represention with the character +1 for both 2C∞ and ∞σv, i.e., Σ
+
g .

Singlet Delta Oxygen (Normal Singlet Oxygen) Normal singlet oxygen is the 1∆g state. ∆g

is a doubly degenerate representation. That means that it has two components which I shall write
as,

[ ] σ∗
p

π∗
x [↑↓][ ] π∗

y - π∗
x [ ][↑↓] π∗

y

πx [↑↓] [↑↓] πy
[↑↓] σp
[↑↓] σ∗

s

[↑↓] σs
1∆

(1)
g

i.e.,
1∆(1)

g =
1√
2

(
|π∗
x, π̄

∗
x| − |π∗

y , π̄
∗
y|
)
, (4.20)
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and

[ ] σ∗
p

π∗
x [↑ ][ ↓] π∗

y - π∗
x [ ↓][↑ ] π∗

y

πx [↑↓] [↑↓] πy
[↑↓] σp
[↑↓] σ∗

s

[↑↓] σs
1∆

(2)
g

i.e.,

1∆(2)
g =

1√
2

(
|π∗
x, π̄

∗
y| − |π̄∗

x, π
∗
y|
)
, (4.21)

will transform into linear combinations of each other under rotations and reflections. Let us check
this.

Rotation:

R̂(φ)1∆(1)
g =

1√
2

(
|π∗
x′, π̄

∗
x′| − |π̄∗

y′ , π
∗
y′|
)

=
1√
2
|π∗
x cosφ− π∗

y sinφ, π̄
∗
x cos φ− π̄∗

y sinφ|

− 1√
2
|π∗
x sinφ+ π∗

y cosφ, π̄
∗
x sinφ+ π̄∗

y cosφ|

=
1√
2

(
|π∗
x, π̄

∗
x| cos2 φ− |π∗

x, π̄
∗
y| cosφ sinφ− |π∗

y , π̄
∗
x| cosφ sinφ+ |π∗

y , π̄
∗
y| sin2 φ

)

− 1√
2

(
|π∗
x, π̄

∗
x| sin2 φ− |π∗

x, π̄
∗
y| cosφ sinφ− |π∗

y , π̄
∗
x| cosφ sinφ− |π∗

y , π̄
∗
y | cos2 φ

)

=
1√
2

(
|π∗
x, π̄

∗
x| − |π∗

y , π̄
∗
y|
)
cos(2φ)− 1√

2

(
|π∗
x, π̄

∗
y| − |π̄∗

x, π
∗
y|
)
sin(2π)

= 1∆(1)
g cos(2φ)−1 ∆(2)

g sin(2φ) (4.22)

R̂(φ)1∆(2)
g =

1√
2

(
|π∗
x′, π̄

∗
y′ | − |π̄∗

x′, π
∗
y′ |
)

=
1√
2
|π∗
x cosφ− π∗

y sin φ, π̄
∗
x sinφ+ π̄∗

y cos φ|

− 1√
2
|π̄∗
x cosφ− π̄∗

y sin φ, π
∗
x sinφ+ π∗

y cos φ|

=
1√
2

(
|π∗
x, π̄

∗
x| cosφ sinφ+ |π∗

x, π̄
∗
y| cos2 φ− |π∗

y , π̄
∗
x| sin2 φ− |π∗

y , π̄
∗
y| cosφ sinφ

)

− 1√
2

(
|π̄∗
x, π

∗
x| cosφ sinφ+ |π̄∗

x, π
∗
y| cos2 φ− |π̄∗

y , π
∗
x| sin2 φ− |π̄∗

y , π
∗
y| cosφ sinφ

)

=
1√
2

(
|π∗
x, π̄

∗
x| − |π∗

y , π̄
∗
y|
)
sin(2φ) +

1√
2

(
|π∗
x, π̄

∗
y|+ |π̄∗

x, π
∗
y|
)
cos(2φ)

= 1∆(1)
g sin(2φ) +1 ∆(2)

g cos(2φ) (4.23)
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Hence

R̂(φ)
(

1∆
(1)
g

1∆
(2)
g

)

=
(

1∆
(1)
g

1∆
(2)
g

)[
R1,1 R1,2

R2,1 R2,2

]

=
(

1∆
(1)
g

1∆
(2)
g

)[
cos(2φ) sin(2φ)
− sin(2φ) cos(2φ)

]

(4.24)
The character for the rotation is χ(R) = R1,1 + R2,2 = 2 cos(2φ), in perfect agreement with the ∆g

character for 2C∞.
Reflection:

σ̂v(φ)
1∆(1)

g =
1√
2

(
|π∗
x′, π̄

∗
x′| − |π̄∗

y′ , π
∗
y′ |
)

=
1√
2
|π∗
x cos(2φ) + π∗

y sin(2φ), π̄
∗
x cos(2φ) + π̄∗

y sin(2φ)|

− 1√
2
|π∗
x sin(2φ)− π∗

y cos(2φ), π̄
∗
x sin(2φ)− π̄∗

y cos(2φ)|

=
1√
2

(
|π∗
x, π̄

∗
x| cos2(2φ) + |π∗

x, π̄
∗
y| cos(2φ) sin(2φ) + |π∗

y , π̄
∗
x| cos(2φ) sin(2φ) + |π∗

y , π̄
∗
y| sin2(2φ)

)

− 1√
2

(
|π∗
x, π̄

∗
x| sin2(2φ)− |π∗

x, π̄
∗
y| cos(2φ) sin(2φ)− |π∗

y , π̄
∗
x| cos(2φ) sin(2φ) + |π∗

y , π̄
∗
y| cos2(2φ)

)

=
1√
2

(
|π∗
x, π̄

∗
x| − |π∗

y , π̄
∗
y|
)
cos(4φ) +

1√
2

(
|π∗
x, π̄

∗
y| − |π̄∗

x, π
∗
y|
)
sin(4φ)

= 1∆(1)
g cos(4φ) +1 ∆(2)

g sin(4φ) (4.25)

σ̂v(φ)
1∆(2)

g =
1√
2

(
|π∗
x′, π̄

∗
y′ | − |π̄∗

x′, π
∗
y′ |
)

=
1√
2
||π∗

x cos(2φ) + π∗
y sin(2φ), π̄

∗
x sin(2φ)− π̄∗

y cos(2φ)|

− 1√
2
|π̄∗
x cos(2φ) + π̄∗

y sin(2φ), π
∗
x sin(2φ)− π∗

y cos(2φ)|

=
1√
2

(
|π∗
x, π̄

∗
x| cos(2φ) sin(2φ)− |π∗

x, π̄
∗
y| cos2(2φ) + |π∗

y , π̄
∗
x| sin2(2φ)− |π∗

y , π̄
∗
y | cos(2φ) sin(2φ)

)

− 1√
2

(
|π̄∗
x, π

∗
x| cos(2φ) sin(2φ)− |π̄∗

x, π
∗
y| cos2(2φ) + |π̄∗

y , π
∗
x| sin2(2φ)− |π̄∗

y , π
∗
y | cos(2φ) sin(2φ)

)

=
1√
2

(
|π∗
x, π̄

∗
x| − |π∗

y , π̄
∗
y|
)
sin(4φ)− 1√

2

(
|π∗
x, π̄

∗
y| − |π̄∗

x, π
∗
y|
)
cos(4φ)

= 1∆(1)
g sin(4φ)−1 ∆(2)

g cos(4φ) (4.26)

Hence

σ̂v(φ)
(

1∆
(1)
g

1∆
(2)
g

)

=
(

1∆
(1)
g

1∆
(2)
g

)[
cos(4φ) sin(4φ)
sin(4φ) − cos(4φ)

]

(4.27)

and the corresponding character, which is the trace of the matrix, is zero in perfect agreement with
the ∆g character for ∞σv.

Caveat The above treatment is adequate for our purposes, but a more elegant treatment would
have been to construct the projectors onto each representation (which should involve some integrals
for these infinite groups) and apply them to project out the wave functions for each representation.
This was not judged necessary.
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4.0.2 Oxygen Electronic States from DFT

3Σ−
g State The question arises as to how to calculate the energy of the various electronic states

of O2 using DFT. Strictly speaking Kohn-Sham theory applies only to the ground state of the
molecule. So handling the 3Σ−

g ground state is not a formal problem (as long as it is non-interacting
v-representable.) It should suffice to do a ground state calculation with multiplicity three.

Even here we have a choice of whether to do a spin-unrestricted Kohn-Sham (UKS) calculation
[different-orbitals-for-different-spin (DODS)] or a spin-restricted open-shell Kohn-Sham (ROKS) cal-
culation [same-orbitals-for-different-spin (SODS).] There are arguments in favor of both approaches.
The UKS approach is conceptually simpler and is consistent with the variational basis of DFT.
However having the SODS simplifies analysis which may be desirable. Roothaan’s spin-restricted
open-shell Hartree-Fock (ROHF) method [133] has been adopted to make several variants on ROKS
[134, 135, 136]. The deMon2k uses the approach of Ref. [135] but has several different parameteri-
zations which allow different treatments of open-shell problems [133, 137, 138, 139, 140, 141].

Whether UKS or ROKS is used, there is another difficulty, namely that of dissociating the
diatomic into two oxygen atoms in definite electronic states. The oxygen atom has n = 4 electrons
in 2(2l + 1) = 6 degenerate p orbitals. This leads to

(
4l + 2
n

)

=

(
6
4

)

= 15 (4.28)
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possible ways to place the electrons. These 15 microstates are:

(1) : [↑↓]
︸︷︷︸

2p−1

[↑ ]
︸︷︷︸

2p0

[↑ ]
︸︷︷︸

2p+1

ML = −1,MS = +1

(2) : [↑↓]
︸︷︷︸

2p−1

[↑ ]
︸︷︷︸

2p0

[↓ ]
︸︷︷︸

2p+1

ML = −1,MS = 0

(3) : [↑↓]
︸︷︷︸

2p−1

[↓ ]
︸︷︷︸

2p0

[↑ ]
︸︷︷︸

2p+1

ML = −1,MS = 0

(4) : [↑↓]
︸︷︷︸

2p−1

[↓ ]
︸︷︷︸

2p0

[↓ ]
︸︷︷︸

2p+1

ML = −1,MS = −1

(5) : [↑ ]
︸︷︷︸

2p−1

[↑↓]
︸︷︷︸

2p0

[↑ ]
︸︷︷︸

2p+1

ML = 0,MS = +1

(6) : [↑ ]
︸︷︷︸

2p−1

[↑↓]
︸︷︷︸

2p0

[↓ ]
︸︷︷︸

2p+1

ML = 0,MS = 0

(7) : [↓ ]
︸︷︷︸

2p−1

[↑↓]
︸︷︷︸

2p0

[↑ ]
︸︷︷︸

2p+1

ML = 0,MS = 0

(8) : [↓ ]
︸︷︷︸

2p−1

[↑↓]
︸︷︷︸

2p0

[↓ ]
︸︷︷︸

2p+1

ML = 0,MS = −1

(9) : [↑ ]
︸︷︷︸

2p−1

[↑ ]
︸︷︷︸

2p0

[↑↓]
︸︷︷︸

2p+1

ML = +1,MS = +1

(10) : [↑ ]
︸︷︷︸

2p−1

[↓ ]
︸︷︷︸

2p0

[↑↓]
︸︷︷︸

2p+1

ML = +1,MS = 0

(11) : [↓ ]
︸︷︷︸

2p−1

[↑ ]
︸︷︷︸

2p0

[↑↓]
︸︷︷︸

2p+1

ML = +1,MS = 0

(12) : [↓ ]
︸︷︷︸

2p−1

[↓ ]
︸︷︷︸

2p0

[↑↓]
︸︷︷︸

2p+1

ML = +1,MS = −1

(13) : [↑↓]
︸︷︷︸

2p−1

[↑↓]
︸︷︷︸

2p0

[ ]
︸︷︷︸

2p+1

ML = −2,MS = 0

(14) : [↑↓]
︸︷︷︸

2p−1

[ ]
︸︷︷︸

2p0

[↑↓]
︸︷︷︸

2p+1

ML = 0,MS = 0

(15) : [ ]
︸︷︷︸

2p−1

[↑↓]
︸︷︷︸

2p0

[↑↓]
︸︷︷︸

2p+1

ML = +2,MS = 0 . (4.29)

Note that not every microstate corresponds to a wave function because not every symmetry may be
represented by a single determinant.

We can work out the possible term symbols using various methods, but I rather like the double
ladder method of Hyde [142]. This requires us to make a table of how many times each (ML,MS)
combination occurs:
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ML\MS -1 0 +1

+2 1
+1 1 2 1
0 1 3 1
-1 1 2 1
-2 1

This decomposes into the sum of three double ladders—namely,

1D Double Ladder
ML\MS -1 0 +1

+2 1
+1 1
0 1
-1 1
-2 1

3P Double Ladder
ML\MS -1 0 +1

+2
+1 1 1 1
0 1 1 1
-1 1 1 1
-2

1S Double Ladder
ML\MS -1 0 +1

+2
+1
0 1
-1
-2

Here we are using Russell-Saunders coupling of the spin and orbital magnetic moments. The term
symbol takes the form 2S+1LJ where

J = L+ S, L+ S − 1, . . . , |L− S| , (4.30)

is a new label used to distinguish the different levels with the same L and S. Hund’s rules tell us
which state should have the lowest energy. There are three rules:

1. Levels with larger S are lower in energy than levels with smaller S.

2. For a given value of S, levels with larger L are lower in energy than levels with smaller L.

3. For the same values of S and L, maximizing J minimizes the energy if the shell is more than
half-filled minimizing J minimizes the energy if the shall is half-filled or less.
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This tells us that the ground state of the oxygen atom is 3P . These correspond to the 3 × 3 = 9
microstates (1)-(9) above. As the shell is more than half full, maximizing J minimizes the energy.

Hund’s rules work well for the ground state but not necessarily for excited states. The Atomic
Spectra Database of the American National Institute of Standards and Technology [143] gives the
following data for the 2p4 term symbols (“multiplets”) of the oxygen atom:

Term J Energy
cm−1 eV

1S 0 33 792.483 4.1897359
1D 2 15 867.862 1.9673651
3P 0 226.977 0.0281416

1 158.265 0.0196224
2 0.000 0.0000000

In this particular case, Hund’s rules actually also work for the excited states, but this should be
taken as purely cöıncidental.

Let us now consider the problem of dissociating O2. According to Ref. [127] (and other sources)
the 3Σ−

g ,
1∆g, and

1Σ+
g states all dissociate into two 3P atoms. Let us try to figure out how this

works for the 3Σ−
g state. This is basically an exercise in how molecular orbital theory is connected

with valence bond theory which can be represented by Lewis representations. As I will be putting
linear combinations of Slater determinants inside Slater determinants, I should take a moment to
clarify what I mean by a determinant of a determinant. As the determinant of a matrix and the
determinant of the transpose of a determinant are the same, we could define a Slater determinant
either by,

|ψ1, ψ2, · · · , ψN | =
1√
N !

∑

σ∈SN

(−1)σψσ(1)(1)ψσ(2)(2) · · ·ψσ(N)(N) , (4.31)

or by,

|ψ1, ψ2, · · · , ψN | =
1√
N !

∑

σ∈SN

(−1)σψ1(σ(1))ψ2(σ(2) · · ·ψN (σ(N) , (4.32)

where SN is the symmetric group for (i.e., the group of permutation of) the numbers 1, 2, · · · , N and
(−1)σ is the sign of the permutation. Only the second definition of the Slater determinant is suitable
for a general function. Thus we may write that,

|f(1, 2, · · · , N)| = 1√
N !

∑

σ∈SN

(−1)σf(σ(1), σ(2), · · · , σ(N)) . (4.33)

It is then a relatively simple exercise in group theory to show that,

||ψ1, ψ2, · · · , ψP |, ψP+1, ψN | =
√
P !|ψ1, ψ2, · · ·ψN | . (4.34)

We also need that determinants are linear so that, for example,

|ψ1, ψ2, · · · , Caψa + Cbψb, · · · , ψN | = Ca|ψ1, ψ2, · · · , ψa, · · ·ψN |+ Ca|ψ1, ψ2, · · · , ψb, · · ·ψN | . (4.35)

This latter allows us to replace p±1 with px and py using the relations,

px =
1√
2
(p+1 + p−1)

py =
1

i
√
2
(p+1 − p−1) . (4.36)
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In particular,
|px, py| = +i|p+1, p−1| (4.37)

differ only by a phase factor. Reacll also that p0 = pz.
We may now make a connection with chemical bonding and in particular with chemical bond

breaking. Orbitals χA and χB on two different centers A and B may form bonding and antibonding
combinations,

ψ± =
1√
2
(χA ± χB) . (4.38)

Here I have assumed that we are only interested in the dissociation limit when the two centers are
so far apart that any overlap between χA and χB is large enough to be able to define what is meant
between bonding and antibonding but small enough to be neglected in the normalization. Note also
that which of the plus and minus combinations is bonding and which is antibonding depends upon
the precise nature of the orbitals χA and χB. Filling both the bonding and antibonding combinations
is equivalent to bond breaking because,

|ψ+, ψ−| = −|χA, χB| . (4.39)

This is why these terms cancel when calculating the bond order index (BOI = (n − n∗)/2, where
n is the number of electrons in bonding orbitals and n∗ is the number of electrons in antibonding
orbitals.) Referring back to Fig. 4.2, we see that we already have in the dissociation limit that,
dropping unimportant phase factors,

|σ, σ̄, σ∗, σ̄∗, σp, σ̄p, πx, π̄x, πy, π̄y π
∗
x, π

∗
y| → |sA, s̄A, sB, s̄B, σp, σ̄p, pAx , pBx , pAy , pBy , π̄x, π̄y| . (4.40)

Dissociating the σp bond is a bit more complicated. As the diatomic traditionally lies along the
z-axis, we have that

σp =
1√
2

(
pAz − pBz

)

σ∗
p =

1√
2

(
pAz + pBz

)
. (4.41)

This leads to
1√
2

(
−|σp, σ̄p|+ |σ∗

p, σ̄
∗
p|
)
=

1√
2

(
|pAz , p̄Bz | − |p̄Az , pBz |

)
, (4.42)

which is proper dissociation. Hence (dropping phase factors)

1√
2
|σ, σ̄, σ∗, σ̄∗,

1√
2

(
−|σp, σ̄p|+ |σ∗

p, σ̄
∗
p |
)
, πx, π̄x, πy, π̄y, π

∗
x, π

∗
y|

→ 1√
2
|sA, s̄A, sB, s̄B, pAz , p̄Bz , pAx , pBx , pAy , pBy , π̄x, π̄y|

− 1√
2
|sA, s̄A, sB, s̄B, p̄Az , pBz , pAx , pBx , pAy , pBy , π̄x, π̄y| . (4.43)

Getting proper atomic dissociation into 3P components requires us to use that,

π̄x = p̄Ax + p̄Bx
π̄∗
x = p̄Ax − p̄Bx
π̄y = p̄Ay + p̄By

π̄∗
y = p̄Ay − p̄By . (4.44)
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Then
1√
2

(
|π̄x, π̄y| − |π̄∗

x, π̄
∗
y|
)
=

1√
2

(
|p̄Ax , p̄By |+ |p̄Ay , p̄Bx |

)
. (4.45)

Hence

1

2
|σ, σ̄, σ∗, σ̄∗,

1√
2

(
−|σp, σ̄p|+ |σ∗

p, σ̄
∗
p|
)
, πx, π̄x, πy, π̄y,

1√
2

(
|π̄x, π̄y| − |π̄∗

x, π̄
∗
y|
)
|

→ 1

2
|sA, s̄A, sB, s̄B, pAz , p̄Bz , pAx , pBx , pAy , pBy , p̄Ax , p̄By |

+
1

2
|sA, s̄A, sB, s̄B, pAz , p̄Bz , pAx , pBx , pAy , pBy , p̄Ay , p̄Bx |

− 1

2
|sA, s̄A, sB, s̄B, p̄az , pBz , pAx , pBx , pAy , pBy , p̄Ax , p̄By |

− 1

2
|sA, s̄A, sB, s̄B, p̄Az , pBz , pAx , pBx , pAy , pBy , p̄Ay , p̄Bx | , (4.46)

which is a sum of four terms each corresponding to two 3P oxygen atoms. We cannot do this in ordi-
nary DFT calculations but we can imagine trying to make a |sA, s̄A, sB, s̄B, pAz , p̄Bz , pAx , pBx , pAy , pBy , p̄Ay , p̄Bx |
(i.e., |sA, s̄A, pAx , pAy , p̄Ay , pAz | and |sB, s̄B, pBx , p̄Bx , pBy , p̄Bz ) by symmetry breaking. Note that it is not
enough to break the σp or πx or πy symmetries but that we have to break them all simultaneously
in the right way, which is not at all an obvious thing to do.

Reference State Problem Let us now turn our attention to singlet oxygen. The result of speci-
fying a spin multiplicity of one and running a calculation is that most programs will try to pair up
electrons to put two electrons in a single π∗ orbital. Such a doubly-occupied π∗ orbital will no longer
be energetically degenerate with the other (empty) π∗ orbital. In fact, the occupied π∗ orbital will
have a higher energy than the unoccupied π∗ orbital because of self-interaction errors. Formal DFT
predicts that this can happen in open-shell systems even for the exact functional when noninteract-
ing v-representability (NVR) fails. We call this an effective failure of NVR when it occurs for an
approximate functional [144]. In either case, the result is that most programs will try to satisfy the
Aufbau principle at each iteration by transfering electrons from the higher-energy occupied π∗ orbital
to the lower-energy unoccupied π∗ orbital. As this then raises the energy of the newly occupied
orbital and lowers the energy of the newly unoccupied orbital, we have an unstable situation and the
calculations will typically no longer converge.

This problem may be solved by creating a reference state with each π∗ orbital having half a spin-
up and half spin-down electron. Most programs have an option which allows the user to create this
fractionally-occupied state easily. In deMon2k, it suffices to use the keyword combination SMEAR

0.1 UNIFORM where the number 0.1 is an adjustable number in eV which controls how close orbitals
are in energy before they are uniformly occupied. A priori this type of fractionally-occupied state
corresponds to some sort of ensemble electronic state, where the ensemble average has been carried
out over several multiplet states. However deeper thought indicates that this conclusion is far from
obvious. Another possibility (not tried) would be to use a carefully-selected ROKS calculation as a
reference state.

Once such a reference state is created, electrons may be displaced to create different occupation
states without additional iterations. In deMon2k, this is done with the keywords SCFTYPE UKS

MAX=0 and MOMODIFY. It should be emphasized that this is not just needed in order to converge the
calculation, but also to guarantee that the different determinants which are created are properly
orthogonal to each other so as to avoid variational collapse. The same problem is addressed in
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complete active state self-consistent field (CAS-SCF) calculations by using state averaging. Of course,
the price that has to be paid is that orbital relaxation is neglected, which is not always a good thing.
Thus the 3Σ−

g state created in this manner will be higher in energy than the fully-relaxed 3Σ−
g state

from a UKS calculation.

Singlet States from the Multiplet Sum Method Although DFT is only giving us access
to states with a single-determinant reference, we may obtain the energies of other states using
the Ziegler-Rauk-Baerends (Daul) multiplet sum method (MSM) [111, 112]. (There are also some
relevant papers by Noodleman, e.g., [145].) This works for single-point (i.e., at a single geometry)
calculations but I am only aware of one implementation of analytic gradients which would allow
geometry optimizations with this method (Friedrichs and Frank used such a method in the CPMD
program to do excited-state dynamics [146].)

To see how to apply the MSM, we will consider the three 3Σ−
g wavefunctions,

(3,1)Σ−
g = |π∗

x, π
∗
y|

(3,0)Σ−
g =

1√
2

(
|π∗
x, π̄

∗
y|+ |π̄∗

x, π
∗
y|
)

(3,−1)Σ−
g = |π̄∗

x, π̄
∗
y| , (4.47)

and the two 1∆g wavefunctions,

1∆(1)
g =

1√
2

(
|π∗
x, π̄

∗
x| − |π̄∗

y , π
∗
y|
)

1∆(2)
g =

1√
2

(
|π∗
x, π̄

∗
y| − |π̄∗

x, π
∗
y|
)
. (4.48)

Then

E[ 3Σ−
g ] = E[ (3,0)Σ−

g ] = E[|π∗
x, π̄

∗
y|] + 〈|π∗

x, π̄
∗
y | |Ĥ| |π̄∗

x, π
∗
y|〉

E[ 1∆g] = E[ 1∆(2)
g ] = E[|π∗

x, π̄
∗
y|]− 〈|π∗

x, π̄
∗
y| |Ĥ| |π̄∗

x, π
∗
y|〉 . (4.49)

Hence,
E[ 3Σ−

g ] + E[ 1∆g] = 2E[|π∗
x, π̄

∗
y|] , (4.50)

and,

E[ 1∆g] = 2E[|π∗
x, π̄

∗
y|]−E[ 3Σ−

g ]

= 2E[|π∗
x, π̄

∗
y|]−E[ (3,0)Σ−

g ]

= 2E[|π∗
x, π̄

∗
y|]−E[|π∗

x, π
∗
y|] . (4.51)

Thus the 1∆g energy has been expressed purely in terms of the energies of two single-determinantal
states—namely the fictitious mixed-symmetry |π∗

x, π̄
∗
y| state and the triplet state |π∗

x, π
∗
y|. Formally

these should be calculated using the same orbitals. However it may be advantageous to using a
relaxed triplet determinant.

In principle the extension of the MSM to the

1Σ+
g =

1√
2

(
|π∗
x, π̄

∗
x|+ |π∗

y , π̄
∗
y |
)

(4.52)
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is just as straightforward as

E[ 1Σ+
g ] = E[|π∗

x, π̄
∗
x|] + 〈|π∗

x, π̄
∗
x| |Ĥ| |π∗

y, π̄
∗
y|〉

E[ 1∆g] = E[ 1∆(1)
g ] = E[|π∗

x, π̄
∗
x|]− 〈|π∗

x, π̄
∗
x| |Ĥ| |π∗

y , π̄
∗
y|〉 . (4.53)

So,
E[ 1Σ+

g ] + E[ 1∆g] = 2E[|π∗
x, π̄

∗
x|] , (4.54)

and
E[ 1Σ+

g ] = 2E[|π∗
x, π̄

∗
x|]− E[ 1∆g] . (4.55)

Although we will not consider it here, time-depedent (TD) DFT provides an alternative and
intrisically multideterminantal way to access excited states and many programs include analytic
gradients for TD-DFT which allow geometry optimizations. We will not pursue this further here but
we note that applications of TD-DFT are not always straightforward for open-shell systems either
and may, for example, require special techniques such as TD spin-flip DFT [147].

4.0.3 Exercises

We wish to calculate the potential energy curves (PECs) for the 3Σ−
g ,

1∆g, and 1Σ+
g states and

compare them with the accurate curves tabulated in Table 4.2.

Without Symmetry Breaking

We will do this at the BLYP/DEF2-TZVPP lvel of calculation with the GEN-A3* auxiliary basis
set and we will ignore the problem of symmetry breaking, at least in the first instance.

The input file for calculating the 3Σ−
g PEC is:

TITLE O2

MULTI 3

CHARGE 0

VXCTYPE BLYP

SCFTYPE UKS

#

PRINT MOS = 8-9

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

O 0.000000 0.000000 0.000000

O 0.000000 0.000000 1.700000

#

AUXIS (GEN-A3*)

BASIS (DEF2-TZVPP)

Only the 1.7 bohr bond distance needs to be varied. This produces the relaxed 3Σ−
g PEC.

We need to create the fractional occupation reference state. This can be done using the SMEAR

0.05 UNIFORM keywords. Here 0.05 is the window in eV within which all of the orbitals will have the
same occupation number. Some adjusting of the size of this window may be necessary for different
bond distances. A suitable input file is:
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Table 4.2: O2 potential energy curves from Fig. 1 of Ref. [127] digitized with WebPlotDigitizer
[128]. The zero of energy is the vibrational zero-point energy of the ground state.

R (bohr) Energy (Ha) R (bohr) Energy (Ha)
X 3Σ−

g a 1∆g b 1Σ+
g X 3Σ−

g a 1∆g b 1Σ+
g

1.7 0.29247 0.33467 0.33185 4.2 0.18426 0.18120 0.18426
1.8 0.18075 0.22188 0.25813 4.3 0.18571 0.18353 0.18578
1.9 0.08980 0.13237 0.16356 4.4 0.18681 0.18466 0.18681
2.0 0.03976 0.08080 0.10942 4.5 0.18766 0.18557 0.18766
2.1 0.01050 0.04976 0.07790 4.6 0.18829 0.18616 0.18829
2.2 -0.00157 0.03736 0.06365 4.7 0.18869 0.18674 0.18869
2.3 -0.00276 0.03367 0.05777 4.8 0.18905 0.18696 0.18905
2.4 0.00125 0.03717 0.05979 4.9 0.18924 0.18725 0.18924
2.5 0.01083 0.04452 0.06617 5.0 0.18963 0.18747 0.18963
2.6 0.02345 0.05571 0.07520 5.1 0.18974 0.18778 0.18974
2.7 0.03699 0.06810 0.08565 5.2 0.19001 0.18775 0.19001
2.8 0.05081 0.08012 0.09644 5.3 0.19040 0.18788 0.19040
2.9 0.06570 0.09264 0.10734 5.4 0.19025 0.18831 0.19025
3.0 0.08143 0.10494 0.11840 5.5 0.19027 0.18828 0.19250
3.1 0.09608 0.11663 0.12890 5.6 0.19037 0.18804 0.19214
3.2 0.10986 0.12714 0.13814 5.7 0.19045 0.18858 0.19181
3.3 0.12276 0.13678 0.14644 5.8 0.19033 0.18885 0.19178
3.4 0.13480 0.14545 0.15365 5.9 0.19034 0.18966 0.19196
3.5 0.14550 0.15296 0.15999 6.0 0.19036 0.19045 0.19206
3.6 0.15459 0.15927 0.16552 6.1 0.19039 0.18840 0.19228
3.7 0.16234 0.16498 0.17007 6.2 0.19061 0.19061 0.19233
3.8 0.16889 0.16858 0.17387 6.3 0.19065 0.19065 0.19237
3.9 0.17434 0.17189 0.17698 6.4 0.19067 0.19067 0.19262
4.0 0.17892 0.17540 0.18056 6.5 0.19068 0.19068 0.19262
4.1 0.18210 0.17821 0.18210 6.6 0.19059 0.19060 0.19264



98 CHAPTER 4. LESSON 6: SINGLET OXYGEN, 1∆ O2

TITLE O2

CHARGE 0

VXCTYPE BLYP

# ----- uncomment for step 1 ----------

MULTI 1

SCFTYPE UKS MAX=200

MIXING OMA

SMEAR 0.05 UNIFORM

# ----- end step 1 commands--------------

# ----- uncomment for step 2 ------------

# MULTI 3

# SCFTYPE UKS MAX=0

# MOMODIFY 2 2

# 8 1

# 9 1

# 8 0

# 9 0

# ----- end step 2 commands--------------

PRINT MOS = 8-9

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

O 0.000000 0.000000 0.000000

O 0.000000 0.000000 1.800000

#

AUXIS (GEN-A3*)

BASIS (DEF2-TZVPP)

The MIXING OMA is a special type of mixing that uses fractional occupation and improves the changes
of finding the lowest energy solution of the SCF problem by passing through the interior of the space
of N -representable density matrices[148]. This input creates a restart file. Then commenting out
step 1 and uncommenting step 2 provides us with a file that will begin with the restart and do a
single iteration with the orbital occupancy of our choice, in this case one spin up electron in each of
orbitals 8 and 9 and no spin down electrons in these orbitals:

TITLE O2

CHARGE 0

VXCTYPE BLYP

# ----- uncomment for step 1 ----------

# MULTI 1

# SCFTYPE UKS MAX=200

# MIXING OMA

# SMEAR 0.1 UNIFORM

# ----- end step 1 commands--------------

# ----- uncomment for step 2 ------------

MULTI 3
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SCFTYPE UKS MAX=0

MOMODIFY 2 2

8 1

9 1

8 0

9 0

# ----- end step 2 commands--------------

PRINT MOS = 8-9

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

O 0.000000 0.000000 0.000000

O 0.000000 0.000000 1.800000

#

AUXIS (GEN-A3*)

BASIS (DEF2-TZVPP)

This allows us to calculate the energy of the 3Σ−
g without relaxation from the fractionally occupied

reference state.
The energies of the mixed states needed to calculate the MSM energies of the 1∆g and

1Σ+
g PECs

may be obtained by a similar strategy using this input file:

TITLE O2

MULTI 1

CHARGE 0

VXCTYPE BLYP

# ----- uncomment for step 1 ----------

SCFTYPE UKS MAX=200

MIXING OMA

SMEAR 0.05 UNIFORM

# ----- end step 1 commands--------------

# ----- uncomment for step 2a ------------

# SCFTYPE UKS MAX=0

# MOMODIFY 2 2

# 8 1

# 9 0

# 8 0

# 9 1

# ----- end step 2a commands--------------

# ----- uncomment for step 2b ------------

# SCFTYPE UKS MAX=0

# MOMODIFY 2 2

# 8 1

# 9 0

# 8 1

# 9 0
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# ----- end step 2b commands--------------

#

PRINT MOS = 8-9

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

O 0.000000 0.000000 0.000000

O 0.000000 0.000000 2.600000

Step 1 provides the initial restart file while step 2a provides the mixed state π∗
x[↑ ][ ↓]π∗

y ]π
∗
y and step

2b provides the mixed state π∗
x[↑↓][ ]π∗

y .

With Symmetry Breaking

As we saw previously with the calculation of the H2 potential energy curve (PEC, Sec. 3.2), symmetry
breaking is essential for capturing at least some of the intrinsically multideterminantal aspects of bond
breaking. However symmetry breaking for any molecule can be a difficult business both because
symmetric initial guesses mean that it can be hard to make the molecule break symmetry but also
because there may be multiple ways to break symmetry and we are not guaranteed to find the one
that we really want. Diatomic oxygen is already fairly complicated. Nevertheless it can be a good
learning lesson to try to break symmetry for the ground and excited states. Expect a little frustration
with this part but also expect to learn something by overcoming your frustration!

An important first step is to first calculate the BLYP/DEF2-TZVPP energy of atomic oxygen
with configuration

O: [↑↓]
︸︷︷︸

2s

[↑↓][↑ ][↑ ]
︸ ︷︷ ︸

2p

. (4.56)

This may be accomplished with the following input:

TITLE O2

MULTI 3

CHARGE 0

VXCTYPE BLYP

SCFTYPE UKS MAX=200

MIXING OMA

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

O 0.000000 0.000000 0.000000

#

AUXIS (GEN-A3*)

BASIS (DEF2-TZVPP)

This provides a useful energy zero for calculating the PEC for the diatomic:

V (R) = E[O2](R)− 2E[O] . (4.57)
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After much experimentation, I found that I could use the atomic restart file as an intial guess for
the diatomic (something that I did not think should work):

TITLE O2

MULTI 3

CHARGE 0

VXCTYPE BLYP

SCFTYPE UKS MAX=200

MIXING OMA

GUESS RESTART

#

PRINT MOS = 5-10

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

O 0.000000 0.000000 0.000000

O 0.000000 0.000000 6.600000

#

AUXIS (GEN-A3*)

BASIS (DEF2-TZVPP)

I could then keep the symmetry broken by for the ground state by gradually shortening the bond
length while using the restart file from the previous (longer) bond length. Occasionally I had to play
a few tricks (such as shortening the bond length less quickly) in order to keep the PEC calculations
converging. In this way I obtained a classic (Morse or Lennard-Jones shaped) potential energy curve
for the 3Σ−

g ground state.
Getting broken-symmetry excited states proved to be much more difficult. In the end, I no-

ticed that the broken-symmetry 3Σ−
g restart file could be used to converge the π∗

x[ ↓][↑ ]π∗
y mixed-

symmetry reference configuration

TITLE O2

MULTI 1

CHARGE 0

VXCTYPE BLYP

# ---------------------------------------

SCFTYPE UKS MAX=200

MIXING OMA

GUESS RESTART

# ----------------------------------------

#

PRINT MOS = 8-9

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR
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O 0.000000 0.000000 0.000000

O 0.000000 0.000000 6.600000

#

AUXIS (GEN-A3*)

BASIS (DEF2-TZVPP)

Note that it is very easy to misread the output because (at least in my calculations) the spin ↑
orbitals 8 and 9 are switched for spin ↓. (It is also possible that the orbitals are not simply switched
but mixed in a more complicated way, but this seemed to be at worst only a minor problem in my
calculations.)

To get the energy of the configuration π∗
x[ ][↑↓]π∗

y use the restart from the previous calculation
and this input:

TITLE O2

MULTI 1

CHARGE 0

VXCTYPE BLYP

# ----- ----------------------------------

SCFTYPE UKS MAX=0

MOMODIFY 2 2

8 1

9 0

8 0

9 1

# ----------------------------------------

#

PRINT MOS = 8-9

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

O 0.000000 0.000000 0.000000

O 0.000000 0.000000 6.600000

#

AUXIS (GEN-A3*)

BASIS (DEF2-TZVPP)

Give it a try and have fun!



Chapter 5

Answers

5.1 Lesson 1 Answers

5.1.1 Raw Results

We should always look out for (i) failure of the SCF convergence and (ii) indications that basis
functions have been removed due to near-linear dependence problems. Neither seems to have occured
here.

deMon2K is using spherical GTOs. s-, p-, d-, f -, and g-type orbitals are easily distinguished by
the 2l+1 degeneracy of their orbital energies (and by looking at the corresponding MO coefficients.)
In order to retain a certain objectivity when analyzing the results, I have decided to use a notation
where the lowest energy orbital of p type is labeled 1p, rather than 2p, the lowest energy orbital of d
type is labeled 1d, rather than 3d, etc. It is hoped that this will avoid confusion caused by trying to
assign too much physical meaning to results which are not necessarily good physical approximations
to anything.

Results have been ordered by total energy. The size of the basis set is the total number of
contracted GTOs. I have given the number of sets of each type of contracted GTO in parentheses.

Whenever possible orbital energies are also ordered by energy. However exceptions are marked
in bold where the spin-α and spin-β orbitals follow a slightly different energetic order.

Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

STO-3G 1 (1s) -0.435508095618 1s [↑ ] -0.1625 +0.1130
LANL2DZ 2 (2s) -0.474566071191 2s [ ] +0.7591 +0.9963

1s [↑ ] -0.2532 -0.0576
EPR 10 (4s2p) -0.474658227199 4s [ ] 36.2537 36.7491

3s [ ] +4.5424 +4.8865
2p [ ] +3.4550 +3.7323
2s [ ] +0.5893 +0.7823
1p [ ] +0.5350 +0.6815
1s [↑ ] -0.2539 -0.0609

6-31G** 5 (2s1p) -0.476223308988 1p [ ] +1.8919 +2.1568
2s [ ] +0.6857 +0.9181
1s [↑ ] -0.2597 -0.0703

103
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Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

TZVP-FIP2 13 (2s2p1d) -0.476532343353 2p [ ] +1.4199 +1.6324
2s [ ] +0.6364 +0.8638
3d [ ] +0.1949 +0.2070
1p [ ] +0.1246 +0.1782
1s [↑ ] -0.2616 -0.0746

DZV 2 (2s) -0.476548931869 2s [ ] +0.6379 +0.8651
1s [↑ ] -0.2615 -0.0742

DZVP 5 (2s1p) -0.476548931869 1p [ ] +1.2046 +1.4275
2s [ ] +0.6379 +0.8651
1s [↑ ] -0.2615 -0.0742

TZVP 8 (2s2p) -0.476587919472 2p [ ] +1.4214 +1.6338
2s [ ] +0.6374 +0.8648
1p [ ] +0.1268 +0.1804
1s [↑ ] -0.2616 -0.0744

TZVP-FIP1 8 (2s2p) -0.476587919472 2p [ ] +1.4214 +1.6338
2s [ ] +0.6374 +0.8648
1p [ ] +0.1268 +0.1804
1s [↑ ] -0.2616 -0.0744

Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

DZV-GGA 2 (2s) -0.476781268721 2s [ ] +0.6194 +0.8433
1s [↑ ] -0.2607 +0.6194

DZVP-GGA 5 (2s1p) -0.476781268721 1p [ ] +1.2053 +1.4290
2s [ ] +0.6194 +0.8433
1s [↑ ] -0.2607 -0.0727
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Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

AUG-PCJ-0 4 (4s) -0.477158407949 4s [ ] +6.2855 +6.6716
3s [ ] +0.5694 +0.7480
2s [ ] +0.0283 +0.0623
1s [↑ ] -0.2692 -0.1009

AUG-CC-PVDZ 9 (3s2p) -0.478013390837 2p [ ] +1.4512 +1.6581
3s [ ] +0.5197 +0.6956
1p [ ] +0.1525 +0.2172
2s [ ] +0.0314 +0.0663
1s [↑ ] -0.2683 -0.0994

AUG-PCJ-1 14 (5s2p) -0.478215200122 5s [ ] 21.3469 +21.8066
3p [ ] 20.9480 +21.3855
4s [ ] +2.6785 +2.9701
2p [ ] +1.7632 +2.0098
3s [ ] +0.3701 +0.4986
1p [ ] +0.0733 +0.1070
2s [ ] +0.0247 +0.0524
1s [↑ ] -0.2691 -0.1006



106 CHAPTER 5. ANSWERS

Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

SAD 9 (3s2p) -0.478495254602 2p [ ] +0.7971 +0.9528
3s [ ] +0.4346 +0.5919
1p [ ] +0.1010 +0.1441
2s [ ] +0.0318 +0.0648
1s [↑ ] -0.2687 -0.0998

DEF2-TZVPP 14 (3s2p1d) -0.478523349354 2p [ ] +3.4420 +3.7150
1d [ ] +3.0716 +3.2875
3s [ ] +2.1195 +2.4013
1p [ ] +0.5280 +0.6717
2s [ ] +0.2277 +0.3484
1s [↑ ] -0.2678 -0.0932

6-311G** 6 (3s1p) -0.478526032411 3s [ ] +2.1078 +2.3892
1p [ ] +1.1997 +1.4214
2s [ ] +0.2264 +0.3467
1s [↑ ] -0.2678 -0.0932

cc-pVTZ 14 (3s2p1d) -0.478526581011 2p [ ] +3.4420 +3.7150
1d [ ] +3.0716 +3.2875
3s [ ] +2.1076 +2.3889
1p [ ] +0.5280 +0.6717
2s [ ] +0.2263 +0.3465
1s [↑ ] -0.2678 -0.0932

IGLO-II 6 (3s1p) -0.478538678025 3s [ ] +2.0706 +2.3505
1p [ ] +1.0109 +1.2172
2s [ ] +0.2212 +0.3400
1s [↑ ] -0.2679 -0.0936
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Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

AUG-CC-PVTZ 23 (4s3p2d) -0.478556529112 3p [ ] +3.6446 +3.9123
2d [ ] +3.4802 +3.6919
4s [ ] +2.2039 +2.4823
2p [ ] +0.7776 +0.9128
1d [ ] +0.6392 +0.7090
3s [ ] +0.3244 +0.4366
1p [ ] +0.1027 +0.1463
2s [ ] +0.0227 +0.0489
1s [↑ ] -0.2689 -0.1000

DZ-ANO 9 (3s2p) -0.478584935851 2p [ ] +1.5802 +1.7989
3s [ ] +0.9139 +1.1454
1p [ ] +0.1586 +0.2280
2s [ ] +0.0374 +0.0868
1s [↑ ] -0.2681 -0.0985

AUG-PCJ-2 33 (6s4p3d) -0.478638545287 6s [ ] 26.8033 27.2601
3d [ ] 25.6063 26.0085
4p [ ] 24.6743 25.1102
5s [ ] +4.9664 +5.2842
3p [ ] +4.0671 +4.3464
2d [ ] +3.6788 +3.9097
4s [ ] +1.1220 +1.3041
2p [ ] +0.7554 +0.9056
1d [ ] +0.2280 +0.2477
3s [ ] +0.2156 +0.2924
1p [ ] +0.0634 +0.0921
2s [ ] +0.0173 +0.0370
1s [↑ ] -0.2690 -0.1002

AUG-CC-PVQZ 46 (5s3p3d2f) -0.478665974013 3d [ ] +7.9271 +8.2063
4p [ ] +7.4415 +7.7525
5s [ ] +6.8584 +7.2210
2f [ ] +6.1674 +6.3806
3p [ ] +2.2361 +2.4329
2d [ ] +2.1685 +2.3201
1f [ ] +1.3706 +1.4463
4s [ ] +1.3119 +1.5094
2p [ ] +0.5704 +0.6741
1d [ ] +0.4781 +0.5271
3s [ ] +0.2607 +0.3483
1p [ ] +0.0826 +0.1168
2s [ ] +0.0203 +0.0430
1s [↑ ] -0.2690 -0.1001
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Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

AUG-PCJ-3 61 (9s6p4d2f) -0.478678491280 9s [ ] 316.1227 316.6702
6p [ ] 106.2487 106.7586
8s [ ] 65.2161 65.7009
4d [ ] 41.1240 41.5577
5p [ ] 18.7322 19.1300
7s [ ] 18.5835 18.9808
2f [ ] +9.0720 +9.3366
3d [ ] +7.3085 +7.5818
6s [ ] +5.8099 +6.1036
4p [ ] +4.7623 +5.0262
5s [ ] +1.8494 +2.0393
2d [ ] +1.7992 +1.9490
3p [ ] +1.4287 +1.5852
4s [ ] +0.5535 +0.6570
2p [ ] +0.3560 +0.4403
1f [ ] +0.3609 +0.3727
1d [ ] +0.1934 +0.2081
3s [ ] +0.1345 +0.1799
1p [ ] +0.0534 +0.0747
2s [ ] +0.0128 +0.0270
1s [↑ ] -0.2690 -0.1002
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Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

AUG-PCJ-4 99 (11s8p5d3f2g) -0.478679881242 11s [ ] 1295.3479 1295.9104
8p [ ] 504.2247 504.7784
10s [ ] 272.4493 272.9869
7p [ ] 89.5868 90.0788
9s [ ] 80.4120 80.8955
5d [ ] 44.6374 45.0753
8s [ ] 26.7114 27.1212
6p [ ] 22.8657 23.2553
2g [ ] 16.6930 16.9745
2f [ ] 12.1613 12.4375
7s [ ] +9.4810 +9.8020
4d [ ] +8.5163 +8.7931
5p [ ] +8.0131 +8.2957
1f [ ] +3.4595 +3.6155
6s [ ] +3.4567 +3.6834
4p [ ] +3.0843 +3.2809
3d [ ] +2.7283 +2.8856
5s [ ] +1.2377 +1.3801
3p [ ] +1.0624 +1.1866
2d [ ] +0.8473 +0.9197
1f [ ] +0.5145 +0.5227
4s [ ] +0.4088 +0.4862
1f [ ] +0.3302 +0.3400
2p [ ] +0.2893 +0.3478
1d [ ] +0.1760 +0.1870
3s [ ] +0.1079 +0.1439
1p [ ] +0.0486 +0.0667
2s [ ] +0.0105 +0.0225
1s [↑ ] -0.2690 -0.1001
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Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

AUG-CC-PV5Z 80 (6s5p4d3f2g) -0.478696304484 5p [ ] 16.3297 16.5007
4d [ ] 13.3297 13.6430
2g [ ] 12.6824 12.9295
3f [ ] 12.3776 12.6525
6s [ ] 12.2082 12.6030
4p [ ] +5.3953 +5.6572
3d [ ] +4.7656 +4.9710
2f [ ] +3.8388 +3.9923
5s [ ] +2.8146 +3.0578
1g [ ] +2.7065 +2.7992
3p [ ] +1.7409 +1.9084
2d [ ] +1.5748 +1.6892
1f [ ] +1.0184 +1.0711
4s [ ] +0.8071 +0.9410
2p [ ] +0.4732 +0.5613
1d [ ] +0.3838 +0.4197
3s [ ] +0.1867 +0.2496
1p [ ] +0.0713 +0.1002
2s [ ] +0.0153 +0.0331
1s [↑ ] -0.2690 -0.1001

Basis Size Energy (Ha) MO energies (Ha)
↑ ↓

IGLO-III 10 (4s2p) -0.478715109266 4s [ ] +5.5700 +5.9174
2p [ ] +3.0597 +3.3244
3s [ ] +1.0276 +1.2117
1p [ ] +0.4350 +0.5646
2s [ ] +0.1408 +0.2243
1s [↑ ] -0.2688 -0.0973

LIC 11 (5s2p) -0.478715642643 5s [ ] 12.1268 12.5219
2p [ ] +2.9876 +3.2619
4s [ ] +2.7444 +2.9895
3s [ ] +0.7299 +0.8680
1p [ ] +0.3112 +0.4200
2s [ ] +0.1060 +0.1730
1s [↑ ] -0.2689 -0.0985

5.1.2 Analysis

What Should We Expect?

It is always useful to anticipate what we should find so that we are surprised (and learn something!)
when things are not as we expected. As Louis Pasteur famously said,
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Dans les champs de l’observation le hasard ne favorise que les esprits préparés.
(In the field of observation, chance favors the prepared mind.)

The exact solution is, of course, known for the hydrogen atom. In particular, the ground state
energy is,

E = −1

2
, (5.1)

in Hartree atomic units. Orbital energies depend only on the principle quantum number n and are
given by,

ǫn = −1

2

1

n2
. (5.2)

Neither of these exact results is observed in our calculations, even with the largest basis set! Why?
Those familiar with density-functional theory (DFT) will recognize that the problem comes from

the self-interaction error (SIE) in the local (spin) density approxation (LDA). In particular, the total
energy DFT energy is given by,

E = 〈ψ|
(

−1

2
∇2 − 1

r

)

|ψ〉+ EH [ρ] + Exc[ρ] , (5.3)

where the Coulomb (also called the Hartree) energy is given in terms of the density,

ρ(~r) = |ψ(~r)|2 , (5.4)

as,

EH =
1

2

∫ ∫
ρ(~r1)ρ(~r2)

r1,2
d~r1d~r2 . (5.5)

In principle, had we the exact DFT exchange-correlation (xc) energy functional then we should have
EH+Exc = 0. However usually we have the SIE, EH+Exc > 0, with the result that for the hydrogen
atom, E > −1/2.

Let us also look at how the SIE affects orbital energies. The dominant part of the LDA exchange-
correlation (xc) energy is the exchange part which is known exactly,

Ex = Cx

(∫

ρ
4/3
↑ (~r) d~r +

∫

ρ
4/3
↓ (~r) d~r

)

, (5.6)

where,

Cx = −3

4

(
6

π

)1/3

. (5.7)

The fact that this depends on spin tells us something important, namely that,

ǫ↑ = 〈ψ|
(

−1

2
∇2 +

1

r

)

|ψ〉+
∫ ∫

ρ(~r1)ρ(~r2)

r1,2
d~r1d~r2 +

4

3
Cx

∫ ∫

ρ4/3(~r) d~r

ǫ↓ = 〈ψ|
(

−1

2
∇2 +

1

r

)

|ψ〉+ ρ(~r1)ρ(~r2)

r1,2
d~r1d~r2 , (5.8)

assuming the lone electron has spin ↑. As Cx < 0, then we should have

ǫ↑ < ǫ↓ (5.9)
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for corresponding orbital energies, exactly as observed. Moreover the SIE is actually larger for the
orbital energy than for the total energy because, in going from the total energy expression to the
orbital energy expression, the Hartree part has doubled but the (partially) compensating xc part has
only increased by a factor of 4/3 for spin ↑ and is totally lacking for spin ↓. Thus we actually expect
(and have) that,

E < ǫ↑ < ǫ↓ (5.10)

The Variational Principle

A numerical method to solve a mathematical equation is by definition an approximation. As such
it is complemented by having a criterion that tells us when we have improved or degraded the
approximation. In much of quantum chemistry, this criterion is the variational principle:

Wave Function Variational Principle
Consider the Schrödinger equation,

ĤΨI = EIΨI , (5.11)

where the indices I have been chosen so that E0 ≤ E1 ≤ E2 ≤ · · · , and let Φ be a function
which satisfies all of the boundary conditions of the boundry-value problem (5.11). Then

E0 ≤ E[Φ] =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 . (5.12)

Φ is called the trial wave function and E[Φ] is the variational integral. Note that the
variational integral is a functional (i.e., a function of a function) of Φ.

The boundary conditions include any symmetry constraints so that a corollary is that a trial wave
function belonging to an irreducible representation (irrep) of the symmetry group of the system is
an upper bound to the energy of the lowest state of the same irrep. In the event that the trial wave
function is expressed as a linear combination of basis functions, then the variational principle leads
to the generalized eigenvalue problem,

H ~CI = EIS ~CI . (5.13)

This leads to another important result, namely:

Hylleraas-Undheim-MacDonald or Cayley Interleaving Theorem
(The first name is used by physicists and the second by mathematicians.) As basis
functions are added to the basis set in a linear variational problem the solutions EI to
the variational problem interleave each other as shown in Fig. 5.1. A corollary is that the
Ith solution is an upper bound to the true energy of the Ith state (though it may not be
a very good upper bound.)

We use a different, but related, variational principle in DFT, namely

Hohenberg-Kohn DFT
(Levy-Lieb constrained search.) The ground state energy and charge density with external
potential v may be found by minimizing a functional of N -representable charge densities
ρ,

E0 ≤ Ev[ρ] = F [ρ] +

∫

v(~r)ρ(~r) d~r , (5.14)
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Figure 5.1: Illustration of the Hylleraas-Undheim-MacDonald/Cayley interleaving theorem for the
linear variational principle.

where the quantity,

F [ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉
〈Ψ|Ψ〉 , (5.15)

is universal in the sense of being independent of v. The condition of N -representability
means that a wave function Ψ exists whose density is ρ. Fortunately just about any non-
negative function that integrates to N electrons can be shown to be an N -representable
density.

In practice, we do not have any convenient exact expression for the universal functional F [ρ] so it
must be approximated.

Kohn-Sham DFT
It turns out that the kinetic energy part T is the most difficult part to approximate
so Kohn and Sham proposed replacing the kinetic energy of a fictitious system of non-
interacting electrons whose ground-state density is ρ. This last condition is known as
the requirement of non-interacting v-representability (NIVR) and it fails whenever the
lowest energy state has the LUMO lower in energy than the HOMO which is a familiar
situation for open-shell atoms, transition metal complexes, and near transition states.
Nevertheless for systems with NIVR, we may minimize the energy using the orbitals ψi
of the non-interacting system,

E =
∑

i

ni〈ψi|
(
t̂+ v

)
|ψi〉+

1

2

∫ ∫
ρ(~r1)ρ(~r2)

r1,2
d~r1d~r2 + Exc[ρ] , (5.16)

subject to the constraint of orthonormal orbitals, to obtain the Kohn-Sham orbital equa-
tion, (

t̂+ v(~r1) +

∫
ρ(~r2)

r1,2
d~r2 + vxc[ρ](~r1)

)

ψi(~r1) = ǫiψi(~r1) , (5.17)

where the xc potential,

vxc[ρ](~r) =
δExc[ρ]

δρ(~r)
. (5.18)
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Figure 5.2: Convergence of energies with respect to basis set.

In some sense, the problem of finding a practical accurate form for F has just been transferred to the
problem of finding a practical accurate form for Exc. Nevertheless as Exc makes a smaller magnitude
contribution to the total energy, better results may be obtained with Kohn-Sham DFT than with
the original Hohenberg-Kohn DFT by using approximate functionals. It is to be emphasized that
even more so than with wave function theory, the variational principle is really at the heart of DFT.

If, in addition, we approximate the Kohn-Sham orbitals as a linear combination of basis functions,
then we arrive at Eq. (5.13) for which we may expect the interleaving theorem to apply. There is
a caveat however which is that the interleaving theorem was not derived for a self-consistent theory
such as Kohn-Sham theory. Thus we should be wary that the interleaving theorem might fail because
H depends upon the ~Ci.

With this preamble, let us now look at the results of our calculations with different basis sets
from a variational point of view. Figure 5.2 shows how the basis set converges as the basis set is
varied. If we take the lowest energy (i.e., the one obtained using the LIC basis set) as the LDA limit
ELDA (with this grid and this choice of auxiliary basis set), then we may define an error measure
familiar to chemists who are used to using pH and pKa:

p∆E = − log
(
E − ELDA

)
. (5.19)

To put this in perspective, “chemical accuracy” 1 kcal/mol = 0.0016 Ha, which corresponds to
p∆E = 2.80. Figure 5.3 shows this quantity as a function of the basis set. Chemical accuracy is
apparently obtained beginning with the AUG-CC-PVDZ basis set. Notice though that many basis
sets have exactly the same value of p∆E.

Figure 5.4 explores how the size of the basis set affects the accuracy of the calculated result. Part
(a) of the figure shows that there is no particular correlation between the total number of functions
in the basis set. In particular, there total number of CGTOs goes up and down quite a bit on the
left-hand side of the graph, rises quite a bit towards the right-hand side, only to crash down at the
very right. Part (c) of the figure analyses how the number of sets of each type of CGTO correlates



5.1. LESSON 1 ANSWERS 115

Figure 5.3: The “p” error as a function of basis set relative to the LIC basis result.

Figure 5.4: How (a) the total number of CGTOs in the basis set, (b) the number of sets of each type
of CGTO, and (c) the number of s-type CGTOs affect (c) the accuracy of the final result.
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with the accuracy of the calculated result. A little thought shows that this is a case where symmetry
imposes a boundary condition so that only s-type CGTOs should be able to affect the accuracy of
the calculation. This is most clearly seen in comparing parts (b) and (d) of the figure. Many basis
sets share the same s-type CGTOs and hence have both the same number of s-type CGTOs and the
same accuracy.

So you might say that, “A bigger basis is often better,” at least if you pay attention to the
boundary constraints of the problem. But the choice of a basis set is not so simple. For one thing,
it depends upon whether (i) you want to do the best possible calculation for a single molecule or
(ii) you want to keep the basis set small but balanced and accurate for exploring many molecules
or many geometries of the same molecule. Often chemists want (ii) and so keep the basis set small.
In deciding how to reduce a larger basis set to make an efficient smaller basis set, it also has to
be kept in mind that tight functions (GTOs with large exponents) may improve the energetically-
dominant region near the nucleus but most chemistry is happening in regions of the electron cloud
away from the nucleus in the bonding region. This is why a low total energy obtained from the
presence of many tight functions may not be the best criterion for describing chemical bonding or
reaction mechanisms. And this is also why we have many different types of basis sets here. Some are
optimized to be efficient for describing hydrogen atoms in typical organic molecules where we may
expect the atom to be more compressed than the free hydrogen atom. Some include polarization
functions. Others, such as the EPR basis set, have even more tight functions than usual because of
they are designed to calculate electron pair resonance parameters which are sensitive to the quality
of the wave function near the nucleus. Still others, such as the SAD and FIP basis sets, add diffuse
polarization funcitions to describe how molecular orbitals are polarized in the presence of an applied
electric field. The very largest basis sets are important primarily when you do not know what type
of basis functions are needed to describe the property that interests you or you need to prove that
your calculations are well-converged with respect to basis set. Most calculations will be done with
basis sets from the left-hand side of the graphs, except when absolutely necessary to do otherwise.

Let us now turn to the orbital energies. Traditionally more attention is paid to getting an accurate
total energy than to getting accurate orbital energies. This shows up in the fact that the orbital
energies are printed out with fewer significant figures. Nevertheless we should expect some correlation
between the accuracy of the energy of the 1s orbital and that of the total energy for the hydrogen
atom. This correlation is shown in Fig. 5.5. There is a remarkably good correlation between the two
quantities up to a value of about 3. A correlation limit of about 4 might have been expected given
the number of significant figures printed out for the orbital energies, but the limit seems to be 3. As
a general rule it seems fair to say that the total energy is usually more accurate than the individual
orbital energies that enter into the calculation of the total energy. (Remember that errors cancel
out!)

Figure 5.6 shows how the lowest s ↑ energies vary as a function of basis size. Note that the
interleaving theorem should only apply if successive basis sets are constructed by adding functions
to the previous basis sets. Nevertheless there is some indication of some interleaving-like behavior.
This is even more the case when we look at the results for a specific family of basis functions. Results
are shown for the AUG-PCJ-X basis sets in Fig. 5.7. This section ends with a tabulation of just the
s-functions in the AUG-PCJ-X basis sets to emphasize that they are not constructed by successively
adding basis functions to the previous basis set in the series. Although these basis sets do not
fulfill the conditions of the interleaving theorem, the orbital energies do have a remarkable job of
interleaving each other as the series of basis sets progresses.

#

O-HYDROGEN H (AUG-PCJ-0)
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Figure 5.5: Correlation diagram between p∆E (the error in the total energy) and p∆ǫ (the error in
the 1s orbital energy). Results for the AUG-PCJ-0 (used as the reference for p∆ǫ) and for the LIC
(used as the reference for p∆E) have been omitted to avoid infinities.

Figure 5.6: How the lowest s ↑ energies vary as a function of basis size.
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Figure 5.7: How the lowest s ↑ energies vary as a function of basis size.
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#
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29
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5.2 Lesson 2 Answers

5.2.1 Hartree-Fock

Because Hartree-Fock is self-interaction free, this is the closest thing that we have to an exact answer.
For the total energy we expect to get E = −0.5 Ha, the exact answer for the hydrogen atom. Similarly
the potential seen by the 1s ↑ electron is

v = −1/r , (5.20)

the potential for the hydrogen atom, so we also expect to see

ǫ↑1s = −0.5 Ha . (5.21)

However the electrons in an unoccupied orbital a ↑ will see

v̂↑a = v + vH [ρ1s] + Σ̂x
↑

(5.22)

while the electrons in an unoccupied orbital a ↓ will see

v̂↓a = v + vH [ρ1s] , (5.23)
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the same as in the Hartree approximation to the extent that the ρ1s density is the same. Hence we
expect to see that

ǫ↑a < ǫ↓a . (5.24)

For the 1s ↓ virtual orbital, Koopmans’ theorem tells us to expect an orbital energy close to the
negative of the corresponding electron affinity.

Functional Energy (Ha) MO energies (Ha)
↑ ↓

FOCK -0.499994534955 5s [ ] 12.7160 12.7757
2p [ ] +3.3816 +3.4819
4s [ ] +3.1011 +3.1920
3s [ ] +0.9106 +1.0179
1p [ ] +0.4855 +0.5630
2s [ ] +0.1803 +0.2805
1s [↑ ] -0.5000 +0.0377

The predictions are pretty much as expected. In fact, the agreement is remarkable given that a
finite orbital basis set and a finite auxiliary basis set is used. As the electron affinity of the hydrogen
atom is 0.0278 Ha, we predicted a 1s ↓ orbital energy of -0.0278 Ha which is in reasonable agreement
with the calculated spin 1s ↓ energy of +0.0377 Ha. That is both numbers are close to zero. This
also permits us to estimate that

[ρ1s||ρ1s] ≈ +0.5 Ha . (5.25)

5.2.2 Hartree

The Hartree approximation suffers from a substantional self-interaction error so that the total energy
should be too high by about

1

2
[ρ1s||ρ1s] ≈ +0.25 Ha . (5.26)

Both occupied and virtual orbitals see the same potential irrespective of spin, namely

v̂ = vH [ρ1s] , (5.27)

Comparing with Eq. (5.23), the Hartree orbital energies should be roughly the same as the spin ↑
Hartree-Fock orbital energies. This is confirmed in the following table, as is the expectation that the
1s orbital energy should be about,

ǫ1s ≈ −0.5 Ha + [ρ1s||ρ1s] ≈ 0 . (5.28)

The 1s orbital is only barely bound!

Functional Energy (Ha) MO energies (Ha)
↑ ↓

NONE -0.240286508677 5s [ ] 12.5551 12.5551
2p [ ] +3.3157 +3.3157
4s [ ] +3.0469 +3.0469
3s [ ] +0.9311 +0.9311
1p [ ] +0.5049 +0.5049
2s [ ] +0.2237 +0.2237
1s [↑ ] -0.0274 -0.0274
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Another thing that can be seen in these numbers has to do with the density-fitting procedure used
by deMon2k. In order to eliminate 4-center integrals, the true charge density ρ is often replaced
by a fitted charge density,

ρ̃(~r) =
∑

I

fI(~r)aI . (5.29)

The aI coefficients are obtained by minimizing

[ρ− ρ̃||ρ− ρ̃] = [ρ||ρ]− 2[ρ||ρ̃] + [ρ̃||ρ̃] ≥ 0 . (5.30)

The antivariational quantity 2[ρ||ρ̃]− [ρ̃||ρ̃] which is always a lower bound to the exact [ρ||ρ],

2[ρ||ρ̃]− [ρ̃||ρ̃] ≤ [ρ||ρ] , (5.31)

is used in evaluating the total energy while [ρ||ρ̃] is used in the orbital energy calculation. From the
numbers in the table, we see that

2[ρ1s||ρ̃1s]− [ρ̃1s||ρ̃1s] = +0.5194 Ha

[ρ1s||ρ̃1s] = +0.4725 Ha

[ρ̃1s||ρ̃1s] = +0.4256 Ha . (5.32)

5.2.3 Xα

Before looking at the LDA, it is useful to look just at the exchange part of the LDA. This has come
to be known as the Dirac exchange and takes the form

Ex = Cx

(∫

ρ
4/3
↑ (~r) d~r +

∫

ρ
4/3
↓ (~r) d~r

)

, (5.33)

where,

Cx = −3

4

(
6

π

)1/3

. (5.34)

At that time, closed shell systems were typically assumed with

ρσ =
ρ

2
. (5.35)

Consequently,

Ex = −3

4

(
3

π

)1/3 ∫

ρ4/3(~r) d~r

vx(~r) = −
(
3

π

)1/3

ρ1/3(~r) . (5.36)

Slater made the “mistake” of identifying the potential term with half the corresponding exchange
energy — something which is valid in Hartree-Fock theory. (“Mistake” is in quotes because his
arguments seemed logical at the time.) He thus arrived at

vx(~r) = −3

2

(
3

π

)1/3

ρ1/3(~r) . (5.37)



5.2. LESSON 2 ANSWERS 123

The Kohn-Sham paper made it clear that this was a mistake and led to a period of disagreement
between Slater and Kohn which ended up with Slater proposing to replace Eq. (5.34) with

Cx = −
(

α
3

2

)
3

4

(
6

π

)1/3

, (5.38)

where α is an adjustable parameter. When α = 1, we have the original Slater theory. When α = 2/3,
we recover the original Kohn-Sham theory. Schwartz obtained optimized values of α by fitting to
Hartree-Fock energies for atoms [149]. It is remarkable that, though he found different values for
different atoms, they were all roughly equal to 2/3. However α = 0.75 was found to be a typical
good choice for molecular calculations aiming to reproduce Hartree-Fock energies. We may use the
XALPHA keyword with X = 0.75 (XALPHA default) and X = 0.66666667 (DIRAC) to explore the
sizes of key integrals.

Functional Energy (Ha) MO energies (Ha)
↑ ↓

DIRAC -0.457100711453 5s [ ] 12.1542 12.7416
2p [ ] +3.0126 +3.4562
4s [ ] +2.7675 +3.1697
3s [ ] +0.7470 +1.0043
1p [ ] +0.3302 +0.5548
2s [ ] +0.1172 +0.2709
1s [↑ ] -0.2467 +0.0299

XALPHA -0.489405255903 5s [ ] 12.0916 12.7663
2p [ ] +2.9668 +3.4737
4s [ ] +2.7270 +3.1852
3s [ ] +0.7242 +1.0135
1p [ ] +0.3085 +0.5598
2s [ ] +0.1074 +0.2773
1s [↑ ] -0.2816 +0.0350

For the total energy,

0.042899 = EH + EDirac
x

0.010595 = EH + EXα
x = EH + 1.12499EDirac

x . (5.39)

So

EDirac
x =

0.010595− 0.042899

0.12499
= −0.258452

EH = 0.042899 + 0.258452 = 0.30135 . (5.40)

(For comparison purposes, the output actually gives the value of EDirac
x and it is -0.2535 Ha.) For

the 1s ↑ orbital energy,

0.2532 = ǫH + ǫDirac
x

0.2183 = ǫH + ǫXα
x = ǫH + 1.12499ǫDirac

x (5.41)
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So

ǫDirac
x =

0.2183− 0.2532

0.12499
= −0.2792

ǫH = 0.2532 + 0.2792 = 0.5324 . (5.42)

As expected,

ǫH ≈ EH
2
. (5.43)

As
EDirac
x ≈ −EH , (5.44)

the exchange energy does roughly cancel the spurious self-interation error in the total energy and
this is even more true with the Xα than with the Dirac exchange. However such a cancellation is
clearly not the case for the 1s ↑ orbital energy whose value is much closer to the approximation,

ǫ↑1s ≈ −IP + EA

2
= 0.2639 Ha (5.45)

predicted on the basis of particle number derivative discontinuity (PNDD) arguments.

5.2.4 LDA

For molecules, the dominant part of the xc energy and potential is the exchange part. However for
the hydrogen atom, there should not be any correlation part.

Functional Energy (Ha) MO energies (Ha)
↑ ↓

VWN -0.478715642643 5s [ ] 12.1268 12.5219
2p [ ] +2.9876 +3.2619
4s [ ] +2.7444 +2.9895
3s [ ] +0.7299 +0.8680
1p [ ] +0.3112 +0.4200
2s [ ] +0.1060 +0.1730
1s [↑ ] -0.2689 -0.0985

PZ81 -0.478830327877 5s [ ] 12.1542 12.7416
2p [ ] +3.0126 +3.4562
4s [ ] +2.7675 +3.1697
3s [ ] +0.7470 +1.0043
1p [ ] +0.3302 +0.5548
2s [ ] +0.1172 +0.2709
1s [↑ ] -0.2467 +0.0299

PW92 -0.478755555490 5s [ ] 12.1268 12.5285
2p [ ] +2.9876 +3.2679
4s [ ] +2.7444 +2.9952
3s [ ] +0.7299 +0.8724
1p [ ] +0.3111 +0.4246
2s [ ] +0.1061 +0.1760
1s [↑ ] -0.2689 -0.0939
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As these are all different parameterizations of the xc energy density of the homogeneous electron
gas (HEG), we might have expected them to be even closer than they are. The VWN parameterization
has long been favored by chemists while solid-state physicists have found better results for solids with
the PZ81 parameterization. The PW92 parameterization is more modern and was designed to go
with a GGA correction. The PW92 results are closer to the VWN results than to the PZ81 results.
I am not sure where the differences come from, but it may be from the spin-dependence of the
correlation part of the functional as this part is less well known than is the case where there is no
spin polarization.

We may use the VWN numbers together with the Dirac numbers to estimate the size of the
correlation part of the VWN energy. From the total energy,

EHxc = −0.478715642643 + 0.5 = +0.02128

Exc = EHxc −EH = +0.02128− 0.30135 = −0.28007

Ec = Exc −Ex = −0.28007 + 0.25845 = −0.02162 . (5.46)

(The output gives Exc = −0.2783 Ha.) From the orbital energy,

ǫHxc = −0.2689 + 0.5 = +0.23110

ǫxc = ǫHxc − ǫH = 0.2311− 0.5324 = −0.3013

ǫc = ǫxc − ǫx = −0.3013 + 0.2792 = −0.0221 . (5.47)

The “correlation energy” (there is no correlation in the hydrogen atom!) is less than a tenth the
magnitude of the exchange but of the same sign. Nevertheless, for the total energy, the erroneous
correlation energy is correcting the erroneous exchange energy to give an improved xc energy. This
emphasizes an important principle of DFAs:

The LDA works by cancellation of errors between the exchange and correlation parts.

This is why it is usually a bad idea to mix 100% exact exchange with DFA correlation.

5.2.5 GGAs

GGAs improve the total energy. In general they reduce the overbinding of the LDA and improve
bond lengths (usually by making them longer.)

Functional Energy (Ha) MO energies (Ha)
↑ ↓

PW86 -0.502012085529 5s [ ] 12.0195 12.6435
2p [ ] +2.9688 +3.3335
4s [ ] +2.7135 +3.0651
3s [ ] +0.7138 +0.9267
1p [ ] +0.3088 +0.4778
2s [ ] +0.0970 +0.2128
1s [↑ ] -0.2823 -0.0410
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Functional Energy (Ha) MO energies (Ha)
↑ ↓

BLYP -0.497978305125 5s [ ] 12.0130 12.7278
2p [ ] +2.9780 +3.3710
4s [ ] +2.7237 +3.1037
3s [ ] +0.7240 +0.9483
1p [ ] +0.3228 +0.4897
2s [ ] +0.1026 +0.2266
1s [↑ ] -0.2720 -0.0258

OLYP -0.498786265116 5s [ ] 12.0852 12.7272
2p [ ] +2.9725 +3.3733
4s [ ] +2.7335 +3.1052
3s [ ] +0.7350 +0.9491
1p [ ] +0.3300 +0.4904
2s [ ] +0.0984 +0.2274
1s [↑ ] -0.2711 -0.0250

The spin-pairing energy is the energetic cost of pairing electrons. Our studies of spin-crossover
iron complexes show that the spin-pairing energy is too high in the HF method, leading to too much
destabilization of low-spin states compared to high-spin states, and too low in the LDA and GGA,
leading to too much stabilization of low-spin states compared to high-spin states [150, 151, 152,
153, 154, 155]. OLYP has a different parameterization of the spin part of the functional which we
found helpful for our problem [152] though the best solution is to seek out functional-independent
quantities [154].

Functional Energy (Ha) MO energies (Ha)
↑ ↓

PW91 -0.501709458186 5s [ ] 12.0377 12.6085
2p [ ] +2.9674 +3.3166
4s [ ] +2.7186 +3.0575
3s [ ] +0.7209 +0.9377
1p [ ] +0.3150 +0.5029
2s [ ] +0.0959 +0.2247
1s [↑ ] -0.2809 -0.0274

PW91SSF -0.501709458186 5s [ ] 12.0377 16.2157
2p [ ] +2.9674 +6.8816
4s [ ] +2.7186 +6.1649
3s [ ] +0.7209 +3.6635
1p [ ] +0.3150 +1.7466
2s [ ] +0.0959 +1.2593
1s [↑ ] -0.2809 +0.1956

Note that the PW91 and PW91SSF differ only in the spin ↓ energies in this case.
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Functional Energy (Ha) MO energies (Ha)
↑ ↓

PBE -0.500096631914 5s [ ] 12.0492 12.6205
2p [ ] +2.9679 +3.3272
4s [ ] +2.7218 +3.0673
3s [ ] +0.7225 +0.9433
1p [ ] +0.3163 +0.5101
2s [ ] +0.0968 +0.2284
1s [↑ ] -0.2791 -0.0203

PBESSF -0.500096631915 5s [ ] 12.0492 15.9124
2p [ ] +2.9679 +6.4435
4s [ ] +2.7218 +5.8147
3s [ ] +0.7225 +3.2070
1p [ ] +0.3163 +1.4938
2s [ ] +0.0968 +1.1062
1s [↑ ] -0.2791 +0.1835

PBESOL -0.488800939153 5s [ ] 12.0982 12.5966
2p [ ] +2.9800 +3.3056
4s [ ] +2.7367 +3.0455
3s [ ] +0.7300 +0.9289
1p [ ] +0.3171 +0.4904
2s [ ] +0.1049 +0.2203
1s [↑ ] -0.2715 -0.0378

Functional Energy (Ha) MO energies (Ha)
↑ ↓

KT1 -0.503232109232 5s [ ] 11.9631 12.5627
2p [ ] +2.9626 +3.2901
4s [ ] +2.6983 +3.0144
3s [ ] +0.7064 +0.8813
1p [ ] +0.2989 +0.4283
2s [ ] +0.0924 +0.1791
1s [↑ ] -0.2931 -0.0868

KT2 -0.495143472381 5s [ ] 11.9555 12.6468
2p [ ] +2.9652 +3.3651
4s [ ] +2.7024 +3.0848
3s [ ] +0.7158 +0.9362
1p [ ] +0.3117 +0.4832
2s [ ] +0.1041 +0.2197
1s [↑ ] -0.2862 -0.0332

KT3 -0.504241654511 5s [ ] 11.9814 12.7469
2p [ ] +2.9602 3.3952
4s [ ] +2.7071 +3.1237
3s [ ] +0.7229 +0.9623
1p [ ] +0.3235 +0.5021
2s [ ] +0.0988 +0.2368
1s [↑ ] -0.2836 -0.0135
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Functional Energy (Ha) MO energies (Ha)
↑ ↓

SO11 -0.506405023441 5s [ ] 12.0016 9.5795
2p [ ] +2.9824 -1.7955
4s [ ] +2.6582 -0.6286
3s [ ] +0.7314 -2.4455
1p [ ] +0.3198 -3.3459
2s [ ] +0.0343 -4.4832
1s [↑ ] -0.2900 -4.5591

N12 -0.495539166790 5s [ ] 12.0313 12.5389
2p [ ] +2.9588 +3.2811
4s [ ] +2.7110 +3.0181
3s [ ] +0.7258 +0.9179
1p [ ] +0.3369 +0.5118
2s [ ] +0.0688 +0.1178
1s [↑ ] -0.2759 -0.0591

GAM -0.501238932629 5s [ ] 12.0447 12.6141
2p [ ] +2.9754 +3.3383
4s [ ] +2.7228 +3.0847
3s [ ] +0.7155 +0.9709
1p [ ] +0.3152 +0.4599
2s [ ] +0.1299 +0.4072
1s [↑ ] -0.2757 -0.0220

CAP -0.499119321907 5s [ ] 12.0751 15.9038
2p [ ] +2.9747 +6.4409
4s [ ] +2.7322 +5.8063
3s [ ] +0.7285 +3.2171
1p [ ] +0.3172 +1.4942
2s [ ] +0.1140 +1.1014
1s [↑ ] -0.2745 +0.1791

I am really surprised that the spin ↓ orbital energies are lower than the spin ↑ orbital energies
for the SO11 functional.

5.2.6 mGGAs

Meta-GGAs that have a kinetic-energy-density dependence become orbital dependent. Such func-
tionals are an example of generalized Kohn-Sham theory.

Here we also get a surprise if we forget to add the BASIS keyword on the VXCTYPE line which is

*** META-GGAS NOT AVAILABLE FOR VXCTYPE OPTION AUXIS ***

The way to fix this is (to use the example of the VS98 calculation) to change the line

VXCTYPE VS98

to

VXCTYPE BASIS VS98
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According to the manual,

“The option BASIS invokes the Kohn-Sham methodology. Note that this choice may slow
down the calculation significantly. For meta-GGAs the option BASIS must be specified.”

This somewhat cryptic phrase menas that the calculations make less use of the auxiliary functions
and do more calculations of integrals via numerical integration. As this can affect accuracy, let us
do an LDA calculation with and without the BASIS keyword.

Functional Energy (Ha) MO energies (Ha)
↑ ↓

VWN -0.478715642643 5s [ ] 12.1268 12.5219
2p [ ] +2.9876 +3.2619
4s [ ] +2.7444 +2.9895
3s [ ] +0.7299 +0.8680
1p [ ] +0.3112 +0.4200
2s [ ] +0.1060 +0.1730
1s [↑ ] -0.2689 -0.0985

BASIS VWN -0.478648455671 5s [ ] 12.1264 12.5217
2p [ ] +2.9874 +3.2617
4s [ ] +2.7453 +2.9903
3s [ ] +0.7288 +0.8671
1p [ ] +0.3111 +0.4199
2s [ ] +0.1049 +0.1715
1s [↑ ] -0.2688 -0.0985

The changes in the orbital energies are on the order of 0.0015 Ha = 0.41 eV or (typically) much less.
The changes difference in the calculation of the total energy is 6.18 × 10−5 Ha = 0.176 kcal/mol. It
looks like there is not too much of a problem with the total energies but that some caution may be
in order when orbital energies are important.
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Functional Energy (Ha) MO energies (Ha)
↑ ↓

VS98 -0.502876321650 5s [ ] 11.3580 12.6263
2p [ ] +2.8145 +3.3301
4s [ ] +2.6080 +3.0643
3s [ ] +0.7072 +0.9487
1p [ ] +0.3003 +0.4902
2s [ ] +0.0773 +0.2453
1s [↑ ] -0.2827 -0.0270

PKZB -0.496427961330 5s [ ] 12.2098 12.7699
2p [ ] +3.0431 +3.4749
4s [ ] +2.8039 +3.1864
3s [ ] +0.7602 +1.0139
1p [ ] +0.3468 +0.5591
2s [ ] +0.0995 +0.2774
1s [↑ ] -0.2709 +0.0348

TPSS -0.500214506138 5s [ ] 13.2832 12.7747
2p [ ] +3.1600 +3.4799
4s [ ] +2.8467 +3.1905
3s [ ] +0.7401 +1.0166
1p [ ] +0.3292 +0.5614
2s [ ] +0.0987 +0.2795
1s [↑ ] -0.2856 +0.0367

M06L -0.503645248883 5s [ ] 14.1623 12.5946
2p [ ] +3.1699 +3.3248
4s [ ] +2.8216 +3.0637
3s [ ] +0.6773 +0.9728
1p [ ] +0.3080 +0.4843
2s [ ] +0.0995 +0.4125
1s [↑ ] -0.2932 -0.0169

M11L -0.506362774397 5s [ ] 13.4160 15.9590
2p [ ] +2.9863 11.5222
4s [ ] +2.5564 13.6111
3s [ ] +0.6834 +8.0899
1p [ ] +0.3079 +5.2408
2s [ ] +0.0582 +0.2661
1s [↑ ] -0.2811 -1.1903

MN12 -0.491794626275 5s [ ] 11.7326 15.0979
2p [ ] +3.0868 +7.4963
4s [ ] +2.8840 +9.3385
3s [ ] +0.7283 +4.4421
1p [ ] +0.3411 +6.3423
2s [ ] +0.0768 +2.3333
1s [↑ ] -0.2848 +0.1970

The first spin ↑ orbital energy is oddly low for the M11L functional.
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5.2.7 Hybrids

These are clearly examples of generalized Kohn-Sham theory and the interpretation of the orbital
energies must be entirely different than that of normal Kohn-Sham theory.

Functional Energy (Ha) MO energies (Ha)
↑ ↓

BH&H -0.498826123629 5s [ ] 12.3659 12.7278
2p [ ] +3.1796 +3.3740
4s [ ] +2.9119 +3.1060
3s [ ] +0.8179 +0.9503
1p [ ] +0.4043 +0.4919
2s [ ] +0.1431 +0.2282
1s [↑ ] -0.3848 -0.0239

B3LYP -0.502507438970 5s [ ] 12.1569 12.6961
2p [ ] +3.0530 +3.3567
4s [ ] +2.7945 +3.0875
3s [ ] +0.7573 +0.9363
1p [ ] +0.3492 +0.4790
2s [ ] +0.1158 +0.2181
1s [↑ ] -0.3225 -0.0364

PBE0 -0.501410762739 5s [ ] 12.2241 12.6224
2p [ ] +3.0685 +3.3285
4s [ ] +2.8155 +3.0686
3s [ ] +0.7691 +0.9445
1p [ ] +0.3567 +0.5114
2s [ ] +0.1187 +0.2289
1s [↑ ] -0.3356 -0.0192

The following are hybrids involving mGGAs, so you have to use VXCTYPE BASIS.
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Functional Energy (Ha) MO energies (Ha)
↑ ↓

M062X -0.498768168660 5s [ ] 11.2521 12.4845
2p [ ] +3.0276 +3.2511
4s [ ] +2.7539 +2.9928
3s [ ] +0.8224 +0.9056
1p [ ] +0.4075 +0.4559
2s [ ] +0.1569 +0.2697
1s [↑ ] -0.3789 -0.0673

M06HF -0.497579308751 5s [ ] +9.4923 12.4078
2p [ ] +2.9095 +3.1890
4s [ ] +2.7127 +2.9403
3s [ ] +0.9664 +0.8702
1p [ ] +0.5054 +0.4815
2s [ ] +0.1818 +0.1198
1s [↑ ] -0.4503 -0.0953

M06 -0.500136455255 5s [ ] 12.1841 12.4846
2p [ ] +3.0858 +3.2539
4s [ ] +2.7512 +2.9966
3s [ ] +0.6740 +0.9129
1p [ ] +0.3393 +0.4809
2s [ ] +0.0648 +0.2428
1s [↑ ] -0.3263 -0.0566

The orbital energies may be used to estimate the fraction of exact exchange via the formula,

xx =
ǫ1s↑ − ǫLDA1s↑

ǫHF1s↑ − ǫLDA1s↑

=
ǫ1s↑ + 0.2689

−0.4999 + 0.2689
= −ǫ1s↑ + 0.2689

0.2310
. (5.48)

Here are the results:

Functional Fraction Exact Exchange
BH&H 0.50
B3LYP 0.23
PBE0 0.29
M062X 0.48
M06HF 0.79
M06 0.25

Remember that these are only rough estimates, not necessarily the actual fraction of exact exchange
appearing in the functional itself. Perdew, Ernzerhof, and Burke have argued on the basis of com-
parisons with second-order Møller-Plesset theory (MP2) that the fraction of exact exchange should
be exactly 0.25 [94] and this is the exact fraction of exact exchange used in the PBE0 functional.

5.2.8 Trends

“It is often claimed that error cancellation plays an essential role in quantum chemistry
and first-principle simulation for condensed matter physics and materials science. Indeed,
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Figure 5.8: A graph of the self-interaction error (SIE) for different functionals. The y-axis is
p|SIE/Ha| = − log10 |SIE/Ha|. A larger value of p|SIE/Ha| corresponds to a smaller SIE.

while the energy of a large, or even medium-size, molecular system cannot be estimated
numerically within chemical accuracy (typically 1 kcal/mol or 1 mHa), it is considered
that the energy difference between two configurations of the same system can be computed
in practice within the desired accuracy.”
— from the abstract of Ref. [156] (Eric Cancès is a mathematician at the École des Ponts
et Chausées in Paris who has contributed to improving quantum chemical methods.)

It is interesting but problematic to look at trends across different families of functionals. It
is problematic because electronic structure calculations in chemistry and solid-state physics often
rely on error cancellation in the sense that errors in the description of the core electrons tend to
cancel out when examining properities which depend primarily on the valence electrons. Thus total
energies are rarely as important as energy differences. Nevertheless it is interesting to calculate the
self-interaction error (SIE)

SIE = E − (-0.5 Ha) . (5.49)

As this may be either positive or negative and varies quite a bit in magnitude I have actually
calculated

p|SIE/Ha| = − log10 |SIE/Ha| . (5.50)

This quantity is shown in Fig. 5.8. The larger the value of p|SIE/Ha|, the smaller the self-interaction
error. Not surprisingly, the largest SIE (smallest p|SIE/Ha|) is found for the Hartree method (NONE)
and the smallest SIE (largest p|SIE/Ha|) is found for the auxiliary-function Hartree-Fock method
(FOCK). The LDA is a definite improvement over the Hartree method and the GGAs further reduce
the SIE (increase p|SIE/Ha|). Thereafter it is not so clear whether mGGAs and hybrid functionals
reduce the SIE (increase p|SIE/Ha|) more than the GGAs have already done.

Other interesting quantities that we can examine are the Koopmans’ ionization potential,

IP = −ǫ1s↑ , (5.51)
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Figure 5.9: Koopmans’ ionization potential (IP), electron affinity (EA), and band gap (gap = IP -
EA) in Ha for different functionals. The dashed lines are exact values except for the light blue line
which is the average of the exact IP and EA.

the Koopmans’ electron affinity,

EA = −ǫ1s↓ , (5.52)

and the band gap,

gap = IP− EA . (5.53)

DFT tells us that the Koopmans’ IP is the true ionization potential (0.5 Ha in this case) when the
xc functional is exact. The experimental EA of the hydrogen atom is 0.0277161 Ha [39]. The band
gap has been the subject of much discussion in the literature as the difference between the HOMO
and LUMO energies is often calculated as an approximation to the band gap but DFT tells us that
this is incorrect because of the particle number derivative discontinuity (PNDD). Nevertheless it
is more correct in generalized Kohn-Sham theory than in the original Kohn-Sham theory. These
quantities are shown in Fig. 5.9 for the various functionals. Note, however, that some functionals are
not shown because they gave clearly absurd values. (The SO11 and M11L functionals gave negative
gaps. The PW91SSF, PBESSF, CAP, M06L, and MN12 functionals had EA ≈ -0.19 Ha, though
this does result in a rather good value of the gap. However negative EAs are likely to be subject to
variational collapse as the basis set is expanded.) The LDA, GGAs, and mGGAs give IPs which
are close to the average of the exact IP and EA as expected from PNDD arguments and far from
the exact value of the IP. The hybrids are a marked improvement for the IP, but still contain large
errors. Hartree-Fock (FOCK) gives the exact IP. All the functionals kept here give small values of
the EA with the three hybrid mGGAs giving the closest values of the EA to the exact EA. As the
EA is small the trends in the band gap follow those of the IP.

5.3 Lesson 3 Answers

5.3.1 Raw Data

Raw data may be found in Tables 5.1 and 5.2.
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Table 5.1: Calculated H+
2 HOMO energy curves using different functionals. All values are in atomic

units (distances are bohr and energies are Ha.)

R (bohr) Energy (Ha)
DFA NONE VWN BLYP B3LYP FOCK

0.8 +0.1346 -0.7164 -1.1815 -1.1988 -1.2750 -1.5544
0.9 +0.0334 -0.6924 -1.1427 -1.1588 -1.2325 -1.5014
1.0 -0.0426 -0.6700 -1.1064 -1.1216 -1.1928 -1.4518
1.1 -0.1007 -0.6491 -1.0727 -1.0871 -1.1560 -1.4055
1.2 -0.1458 -0.6297 -1.0414 -1.0551 -1.1218 -1.3623
1.3 -0.1814 -0.6116 -1.0122 -1.0252 -1.0899 -1.3220
1.35 -0.1963 -0.6030 -0.9983 -1.0111 -1.0748 -1.3028
1.39 -0.2071 -0.5963 -0.9876 -1.0002 -1.0631 -1.2879
1.40 -0.2097 -0.5946 -0.9850 -0.9975 -1.0602 -1.2843
1.41 -0.2122 -0.5930 -0.9823 -0.9947 -1.0573 -1.2806
1.45 -0.2216 -0.5866 -0.9721 -0.9843 -1.0461 -1.2663
1.5 -0.2323 -0.5788 -0.9596 -0.9715 -1.0325 -1.2490
1.6 -0.2507 -0.5641 -0.9360 -0.9475 -1.0066 -1.2159
1.8 -0.2777 -0.5373 -0.8931 -0.9042 -0.9598 -1.1558
2.0 -0.2958 -0.5138 -0.8556 -0.8661 -0.9189 -1.1026
2.2 -0.3080 -0.4930 -0.8226 -0.8328 -0.8828 -1.0554
2.4 -0.3163 -0.4745 -0.4893 -0.8035 -0.8510 -1.0132
2.6 -0.3219 -0.4580 -0.7677 -0.7779 -0.8227 -0.9754
2.8 -0.3256 -0.4432 -0.7448 -0.7551 -0.7976 -0.9415
3.0 -0.3280 -0.4299 -0.7245 -0.7349 -0.7753 -0.9109
3.2 -0.3295 -0.4179 -0.7064 -0.7171 -0.7554 -0.8832
3.6 -0.3308 -0.3972 -0.6759 -0.6872 -0.7218 -0.8355
3.8 -0.3309 -0.3882 -0.6630 -0.6746 -0.7076 -0.8148
4.0 -0.3309 -0.3799 -0.6514 -0.6634 -0.6949 -0.7961
4.2 -0.3307 -0.3724 -0.6411 -0.6534 -0.6834 -0.7790
5.0 -0.3297 -0.3477 -0.6089 -0.6223 -0.6478 -0.7244
6.0 -0.3291 -0.3256 -0.5826 -0.5974 -0.6188 -0.6786
7.0 -0.3295 -0.3097 -0.5651 -0.5807* -0.6001 -0.6484
8.0 -0.3307 -0.2978 -0.5545 -0.5690* -0.5879 -0.6276
9.0 -0.3323 -0.2888 -0.5479 -0.5642* -0.5799 -0.6123
10.0 -0.3340 -0.2807* -0.5441 -0.5616* -0.5648* -0.6006
11.0 -0.3357 -0.2755* -0.5487 -0.5661* -0.5669* -0.5912
12.0 -0.3373 -0.2714* -0.5346 -0.5523* -0.5555* -0.5835
13.0 -0.3387 -0.2681* -0.5411 -0.5593* -0.5705* -0.5770
14.0 -0.3400 -0.2652* -0.5427 -0.5821* -0.5741* -0.5715
15.0 -0.3411 -0.2628* -0.5242 -0.5407* -0.5446* -0.5667
16.0 -0.3421 -0.2607* -0.5220 -0.5387* -0.5425* -0.5625
17.0 -0.3430 -0.2589* -0.5283 -0.5478* -0.5489* -0.5588
18.0 -0.3438 -0.2572* -0.5210 -0.5394* -0.5423* -0.5556
19.0 -0.3446 -0.2557* -0.5213 -0.5945* -0.5417* -0.5526
20.0 -0.3452 -0.2544* -0.5155 -0.5393* -0.5413* -0.5500
21.0 -0.3458 -0.2532* -0.5143 -0.5305* -0.5346* -0.5476
22.0 -0.3463 -0.2522* -0.5194 -0.5367* -0.5388* -0.5455
23.0 -0.3468 -0.2512* -0.5130 -0.5302* -0.5338* -0.5435
24.0 -0.3473 -0.2503* -0.5116 -0.5282* -0.5321* -0.5417
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Table 5.2: Calculated H+
2 potential energy curves using different functionals. All values are in atomic

units (distances are bohr and energies are Ha.)

R (bohr) Energy (Ha)
DFA NONE VWN BLYP B3LYP FOCK

0.8 +0.8973504 +0.1346436 -0.2629462 -0.2981554 -0.3030816 -0.3044456
0.9 +0.5167050 +0.0333998 -0.3510191 -0.3844101 -0.3893343 -0.3902414
1.0 +0.2356733 -0.0425572 -0.4147360 -0.4465342 -0.4514071 -0.4517608
1.1 +0.0245328 -0.1006714 -0.4615067 -0.4919165 -0.4966969 -0.4963895
1.2 -0.1362266 -0.1458372 -0.4961552 -0.5253642 -0.5300112 -0.5289548
1.3 -0.2598560 -0.1813890 -0.5219501 -0.5501120 -0.5545917 -0.5527230
1.35 -0.3107530 -0.1963191 -0.5322630 -0.5599469 -0.5643363 -0.5620471
1.39 -0.3470817 -0.2071133 -0.5394831 -0.5668070 -0.5711188 -0.5684865
1.40 -0.3556068 -0.2096655 -0.5411579 -0.5683944 -0.5726867 -0.5699676
1.41 -0.3639207 -0.2121622 -0.5427827 -0.5699318 -0.5742045 -0.5714000
1.45 -0.3951705 -0.2216202 -0.5488166 -0.5756328 -0.5798246 -0.5766689
1.5 -0.4300872 -0.2323479 -0.5553981 -0.5818199 -0.5859067 -0.5823085
1.6 -0.4881108 -0.2506699 -0.5658501 -0.5915578 -0.5954209 -0.5909234
1.8 -0.5681885 -0.2776993 -0.5786792 -0.6032331 -0.6066006 -0.6002410
2.0 -0.6152906 -0.2958094 -0.5844092 -0.6081523 -0.6109560 -0.6026223
2.2 -0.6411415 -0.3080484 -0.5858306 -0.6090045 -0.6112030 -0.6008283
2.4 -0.6532097 -0.3163329 -0.5846095 -0.6073340 -0.6089182 -0.5965429
2.6 -0.6564241 -0.3219096 -0.5817922 -0.6042109 -0.6051651 -0.5908224
2.8 -0.6540761 -0.3256122 -0.5781077 -0.6003544 -0.6006670 -0.5843445
3.0 -0.6483454 -0.3280098 -0.5740684 -0.5963426 -0.5959701 -0.5775502
3.2 -0.6406478 -0.3294978 -0.5699931 -0.5924402 -0.5913533 -0.5707285
3.6 -0.6226498 -0.3307785 -0.5624272 -0.5855121 -0.5829353 -0.5576918
3.8 -0.6133228 -0.3309112 -0.5591234 -0.5826126 -0.5792899 -0.5516750
4.0 -0.6041916 -0.3308552 -0.5562041 -0.5801407 -0.5760812 -0.5460626
4.2 -0.5954770 -0.3306839 -0.5536796 -0.5780941 -0.5733086 -0.5408772
5.0 -0.5676313 -0.3296968 -0.5472329 -0.5735255 -0.5660900 -0.5243868
6.0 -0.5511527 -0.3290904 -0.5449962 -0.5727918 -0.5629142 -0.5119371
7.0 -0.5492770 -0.3295402 -0.5439532* -0.5727096* -0.5632526 -0.5055699
8.0 -0.5541758 -0.3307376 -0.5478204* -0.5769225* -0.5650712 -0.5025537
9.0 -0.5611778 -0.3323182 -0.5512310* -0.5806171* -0.5673661 -0.5011838
10.0 -0.5682105 -0.3328929* -0.5578618* -0.5881586* -0.5680307* -0.5005699
11.0 -0.5745513 -0.3350736* -0.5574796* -0.6026511* -0.5792177* -0.5002918
12.0 -0.5800564 -0.3369274* -0.5647210* -0.5958426* -0.5750696* -0.5001617
13.0 -0.5847915 -0.3385093* -0.5920525* -0.6211236* -0.5897443* -0.5000973
14.0 -0.5888750 -0.3398708* -0.5615636* -0.5962412* -0.5758407* -0.5000631
15.0 -0.5924215 -0.3410532* -0.5622047* -0.5915818* -0.5723485* -0.5000433
16.0 -0.5955271 -0.3420892* -0.5789653* -0.6140520* -0.5892681* -0.5000309
17.0 -0.5982684 -0.3430042* -0.5642845* -0.5938071* -0.5745304* -0.5000225
18.0 -0.6007059 -0.3438181* -0.5651295* -0.5946451* -0.5753727* -0.5000166
19.0 -0.6028877 -0.3445468* -0.5656131* -0.5949683* -0.5757451* -0.5000123
20.0 -0.6048521 -0.3452029* -0.5693190* -0.6001031* -0.5798820* -0.5000090
21.0 -0.6066300 -0.3457968* -0.5669879* -0.5963991* -0.5771514* -0.5000064
22.0 -0.6082474 -0.3463368* -0.5673828* -0.5966886* -0.5774780* -0.5000044
23.0 -0.6097250 -0.3468300* -0.5678700* -0.5971472* -0.5779416* -0.5000029
24.0 -0.6110783 -0.3472822* -0.5684209* -0.5979264* -0.5786386* -0.5000016
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FOCK

The FOCK/AUG-CC-PV5Z calculations with deMon2k are the closest thing that we have to
the exact answer in this orbital basis set. The figure appears to show that FOCK/AUG-CC-PV5Z is
not very exact compared to the “exact” results from the literature. In fact, the opposite is true: It
is the FOCK/AUG-CC-PV5Z calculations which are more exact as very accurate calculations show
that the minimum of the H+

2 potential energy curve is at -0.597139 Ha (see Table 1 of Ref. [157]. In
the rest of this section, I will be taking the FOCK curve as the exact one!

VWN

One of the most striking things about the VWN curves are that they are jagged, rather than smooth,
for R > 6 bohr. The reason for this is that as R increases the HOMO and LUMO energies get
closer and closer together which makes SCF convergence more and more difficult. In order to get
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Table 5.3: VWN values of the HOMO and LUMO as a function of internuclear distance R as long
as SMEAR values. All values are in atomic units (distances are bohr and energies are Ha.)

R (bohr) Energy (Ha) SMEAR valuea

HOMO LUMO
0.8 -1.1815 -0.2488 none
0.9 -1.1427 -0.2637 none
1.0 -1.1064 -0.2796 none
1.1 -1.0727 -0.2965 none
1.2 -1.0414 -0.3138 none
1.3 -1.0122 -0.3315 none
1.35 -0.9983 -0.3404 none
1.39 -0.9876 -0.3474 none
1.40 -0.9850 -0.3492 none
1.41 -0.9823 -0.3509 none
1.45 -0.9721 -0.3579 none
1.5 -0.9596 -0.3666 none
1.6 -0.9360 -0.3836 none
1.8 -0.8931 -0.4154 none
2.0 -0.8556 -0.4438 none
2.2 -0.8226 -0.4683 none
2.4 -0.7935 -0.4893 none
2.6 -0.7677 -0.5071 none
2.8 -0.7448 -0.5220 none
3.0 -0.7245 -0.5342 none
3.2 -0.7064 -0.5441 none
3.6 -0.6759 -0.5581 none
3.8 -0.6630 -0.5629 none
4.0 -0.6514 -0.5664 none
4.2 -0.6411 -0.5690 none
5.0 -0.6089 -0.5719 none
6.0 -0.5826 -0.5673 none
7.0 -0.5651 -0.5593 0.03
8.0 -0.5545 -0.5523 0.03
9.0 -0.5479 -0.5471 0.03
10.0 -0.5441 -0.5435 0.03
11.0 -0.5487 -0.5465 0.04
12.0 -0.5346 -0.5341 0.04
13.0 -0.5411 -0.5387 0.05
14.0 -0.5427 -0.5400 0.04
15.0 -0.5242 -0.5241 0.04
16.0 -0.5220 -0.5220 0.04
17.0 -0.5283 -0.5269 0.04
18.0 -0.5210 -0.5205 0.04
19.0 -0.5213 -0.5205 0.04
20.0 -0.5155 -0.5155 0.03
21.0 -0.5143 -0.5142 0.03
22.0 -0.5194 -0.5184 0.04
23.0 -0.5131 -0.5130 0.03
24.0 -0.5116 -0.5116 0.03
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convergence I used the SMEAR option which displaces a fraction of an electron from the HOMO to the
LUMO. The values of the SMEAR option that I used are shown in Table 5.3. It is not clear to me if the
kinks in the curves correspond to changes in the value of SMEAR, but the remark about variational
principle violation in the deMon2k Users’ Guide explanation of this keyword is pertinant:

Keyword SMEAR

This keyword specifies a certain kind of fractional occupation at the Fermi level. Note
two things: This smearing is not necessarily the same as Fermi-level smearing in other
codes. The variational principle may be violated if SMEAR is used.
Options:
<Real> Energy range ∆E [in a.u.] around the HOMO energy in which orbitals are
fractionally occupied.
UNIFORM Specifies uniform fractional occupation within ∆E [in a.u.] around the HOMO
level.
Description:
The SMEAR keyword affects only the molecular orbitals within the specified energy
interval [EHOMO −∆E/2 , EHOMO +∆E/2]. Therefore, the ∆E value should be selected
based on the orbital energy spectrum (see MOS option of PRINT). The smearing is done
by inverse proportionality to the energy interval of a given orbital energy to the reference
energy EHOMO −∆E/2. The closer the MO energy is to this reference energy, the larger
will its occupation number be set. To enforce uniform occupation of the orbitals within
the ∆E interval, the option UNIFORM should be used. In either case, the converged
fractional orbital occupation is used in any further step of the calculation (optimization,
frequencies, properties etc.).

NONE

The keywords VXCTYPE NONE corresponds to the Hartree model or, to be more specific, a DFT
calculation with no xc part. It is nearly not bound at all, though there is a shallow minimum around
R = 3.8 bohr which has been shifted to match the energy of the minimum in the Hartree-Fock curve.
The curve appears smooth. However I have used SMEAR 0.04 for R ≥ 10 bohr.
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BLYP

Very similar to the VWN case. I used SMEAR 0.04 for R ≥ 7 bohr except that SMEAR 0.05 was used
for R = 19 bohr.

B3LYP

This is only a mild improvement over the BLYP case. I used SMEAR 0.04 for R ≥ 10 bohr.

5.3.2 Concluding Discussion

Here are the potential energy curves for all the calculations on a single graph:
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Table 5.4: An indication of the curvature of the hydrogen atom energy as a function of occupation
number: Comparison of the asymptotic H+

2 energy (twice the energy of a hydrogen atom having
only half an electron) and the energy of the hydrogen atom (with an entire electron) with the same
functional.

Functional Energy (Ha)
Ha Hb H+

2
c

NONE -0.2402865 -0.3576952 -0.3476983
DFT -0.5000000 -0.6123247 -0.6123247
VWN -0.4787156 -0.5787286 -0.5687823
BLYP -0.4979783 -0.6080431 -0.5982572
B3LYP -0.5025074 -0.5888330 -0.5789887
FOCK -0.4999945 -0.4999948 -0.5000006

a Calculations with one entire electron.
b Twice the energy of the hydrogen atom with half an electron.
c R = 25 bohr

We see that the theoretical DFA model constructed for learning purposes is not very accurate but
captures the main qualitative features of the failings of real DFA calculations. Coincidentally, the
energy of the DFA model at large R is not very far from that of the BLYP calculation (Table 5.4.)

The large R value should be equal to twice the value of the energy of a hydrogen atom calculated
with half an electron, which makes a nice connection with the assertion of Ref. [29] that the form of
the curve is related to curvature of the total energy of the hydrogen atom as a function of occupation
number. deMon2k allows calculations with a fractional total number of electrons only for atoms,
so this calculation can be done using the following input:

TITLE H half-occupancy

CONFIGURE OCCUPY

1 ! put some electrons into the 1s alpha orbital

0 ! put nothing into the 1s beta orbital
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0.5 ! the total number of electrons is 0.5

0.5 ! put 0.5 electrons into the 1s alpha orbital

0. ! put 0. electrons into the 1s beta orbital

#

VXCTYPE VWN

#

PRINT MOS

#

# --- GEOMETRY ---

#

#

GEOMETRY CARTESIAN BOHR

H 0.000000 0.000000 0.000000

#

AUXIS (GEN-A3*)

BASIS (AUG-CC-PV5Z)

Note that the comment lines beginning with an explanation mark must be removed before running
this input and (of course) the keyword VXCTYPE is to be varied. Table 5.4 shows that the value of the
H+

2 energy at R = 25 bohr is indeed close to twice the energy of hydrogen with only half an electron.
Indeed, the later value is better as it is the R = ∞ value calculated without using SMEAR!

For most applications, it is not the total energy that matters but rather the shape of the potential
energy curve. Here is a replotting of the previous data with curves shifted to have the same minimum:

Notice how the VWN and BLYP curves now look nearly identical.

It is also useful to look at the same two plots in the region where all calculations could be
converged without the SMEAR option:
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Notice how none of the conclusions really change. Remember that the FOCK curve is exact. Hence
the shape of the potential energy curves remain quite wrong with all of the common functionals.

To summarize, several things have been learned, including:

1. The danger of the SMEAR option which can violate the variational principle.

2. The inability of current DFAs to give the correct description of the potential energy curve for
breaking (this) one-electron/two-center bond.

3. Caution is in order when using DFT to study reactions between radicals or when using DFT
to study reactions that produce radicals.

4. That the ultimate solution is to design a functional giving a total energy which is as nearly as
possible a linear function of the total number of electrons.
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5.3.3 M062X

In view of recommendations of which functionals are best for radical + molecule reactions [158], I
decided it that it would be good to revisit the M062X functional [96] and also see how it works for
H+

2 dissociation.

This functional has numerical problems. For example, I had a division by zero at R = 2.000 bohr
which I got around by using R = 2.001 bohr. Most of the calculations were converged either
without any tricks or just using GUESS RESTART and the restart file from a previously converged
geometry. Only for two geometries (R = 24.0 bohr and R = 25.0 bohr) did I have to use SMEAR
0.05 UNIFORM. Nevertheless the spin α orbital energies jump around all over the place in a very
disturbing way even though I succeeded in obtaining a much smoother potential energy curve.

5.4 Lesson 4 Answers

5.4.1 Raw Data

The “shifted” energy curves have been shifted so that the dissociation energy is exactly -1 bohr
according to the prescription,

Eshifted(H2) = E(H2)− 2E(H)− 1 bohr , (5.54)

where the value of E(H) is taken from the answer to Lesson 2 (Sec. 5.2.)
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LDA

“Singlet” (MULT 1) spin-contamination 〈Ŝ2〉 as a function of bond distance.

“Singlet” (MULT 1) energy as a function of bond length.
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BLYP

“Singlet” (MULT 1) spin-contamination 〈Ŝ2〉 as a function of bond distance.

“Singlet” (MULT 1) energy as a function of bond length.



5.4. LESSON 4 ANSWERS 147

B3LYP

“Singlet” (MULT 1) spin-contamination 〈Ŝ2〉 as a function of bond distance.

“Singlet” (MULT 1) energy as a function of bond length.
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HF

“Singlet” (MULT 1) spin-contamination 〈Ŝ2〉 as a function of bond distance.

“Singlet” (MULT 1) energy as a function of bond length.

5.4.2 Concluding Discussion

One thing that emerges right away is that MULT 3 ROKS and UKS calculations give exactly the same
energies.

As predicted, the spin-projected results underestimate the true results. While this looks like it
may lead to increasingly correct energies at large R in the Hartree-Fock (HF) case, it is in general a
disaster. Just to be sure I compare accurate potential energy curves from two different sources:
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Comparison of accurate potential energy curves from Refs. [106] and [125].

To the extent that these are variational calculations, the potential energy curve from Ref. [106] is
more correct around the minimum because it has the lower energy. However for R > 3.5 bohr, the
data taken from Ref. [106] look a little erratic while the data from Ref. [125] remains well-behaved.
Nevertheless the comparison data from Ref. [106] is quite adequate for present purposes and we can
see that the proposed spin-projection is useless in practice.

The best way to use DFT to approximate the exact potential energy curve is to use the spin-
unrestricted different-orbitals-for-different-spin (SODS) method. This method has the advantage of
dissociating to H↑ + H↓ or H↓ + H↑, which is at least in some sense qualitatively correct. Thus
RHF dissociates to too high an energy by UHF dissociates to the expected -1 Ha. limit as expected
from chemical arguments. UHF dissociates correctly but is underbound. Symmetry-broken SODS
calculations with DFT do much better than does UHF with, of the functionals tested, BLYP giving
the best potential energy curve. It is interesting to note that HF is exact for H+

2 but fails for H2

because HF includes no electron correlation. It is a strength of DFT that it does include electron
correlation.

Key data for the computed symmetry-broken curves is shown in Table 5.5. The following graphic
summarizes the relation ship between the equilibrium bond length R = Re and the binding energy
De:
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As is frequently seen, there is a rough correlation between stronger bonds and shorter bond lengths.
The best agreement with the exact values is obtained here using the BLYP functional.

The picture is different when we look at spin contamination in the symmetry-broken solutions.
No symmetry-breaking should occur for the exact functional. The easiest way to see this is to note
that in the exact case ρ↑ = ρ↓ = ρ/2 and that ψ↑ = ψ↓ =

√

ρ/2. The exact Kohn-Sham potential
may then be calculated from a high-quality calculation of the charge density, showing that there
is no non-interacting v-representability problem. The situation is very different for approximate
functionals. At equilibrium there is no symmetry breaking. However when going to longer bond
lengths, a point comes when the symmetry-broken solution gives a lower energy than the symmetry
unbroken solution. This bond length is called the Coulson-Fischer point. It is farthest out for the
LDA, closer in for the BLYP functional, and still closer in for the B3LYP functional. It is at a
particularly small value of R for the HF functional. (HF may be viewed as a hybrid functional
without correlation and with 100% exchange.) Note that a larger value of the Coulson-Fischer bond
length does not correspond to a better bond energy. At values of R exceeding the Coulson-Fischer
point, < Ŝ2 > is no longer zero but starts to increase until it reaches the limiting value of unity,
indicating a 50/50 mixture of the singlet (< Ŝ2 >= 0) and the triplet (< Ŝ2 >= 2). Clearly extreme
caution must be used with symmetry-broken solutions for magnetic and other properties depending
upon spin.
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Functional Coulson-Fischer Pointa Rb
e Db

e

LDA 3.15 bohr 1.45 bohr 0.180780 Ha
BLYP 2.96 bohr 1.41 bohr 0.174860 Ha
B3LYP 2.81 bohr 1.40 bohr 0.176099 Ha
HF 2.26 bohr 1.39 bohr 0.133653 Ha

Exact +∞ 1.40 bohr 0.174442 Ha
a (x1, y1) and (x2, y2) satisfying y = mx+ b implies that y = 0 when x = (x1y2 − x2y1)/(y2 − y1).

b Obtained by a parabolic fit to three points: (x1, y1), (x2, y2), and (x3, y3).

Table 5.5: Summary of key data obtained from the computational results. Here Re is the equilibrium
bond length, i.e., the bond length at the minimum of the potential energy curve while De is the
traditional notation for the binding energy (D0 is the notation used for the binding energy if the
zero-point vibrational energy is included in the calculation.)

The formula for finding the minimum from a parabollic fit to three points is a little complicated,
so I wrote a small python script:

# ================================

# FILE: findmin.py

# Read three points on a parabola

# and find the coordinates of the

# minimum (maximum).

# LAST MODIFIED: 25 April 2021

# ================================

from math import *

#

# input

#

print("Give the coordinates of three points")

x1bar=float(input("x1bar: "))

y1bar=float(input("y1bar: "))

print ("(",x1bar,",",y1bar,")")

x2bar=float(input("x2bar: "))

y2bar=float(input("y2bar: "))

print ("(",x2bar,",",y2bar,")")

x3bar=float(input("x3bar: "))

y3bar=float(input("y3bar: "))

print ("(",x3bar,",",y3bar,")")

#

# coordinate shift

#

x1=x1bar-x2bar

# print ("x1: ",x1)

y1=y1bar-y2bar

# print ("y1: ",y1)

x3=x3bar-x2bar
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# print ("x3: ",x3)

y3=y3bar-y2bar

# print ("y3: ",y3)

#

# calculate (x0,y0)

#

# m=2.*(x1*y3-y1*x3)/(x1*x3*(x3-x1))

# print ("m: ",m)

x0=((x1**2)*y3-y1*(x3**2))/(2.*(x1*y3-y1*x3))

y0=0.25*((x1**2)*y3-y1*(x3**2))**2/(x1*x3*(x3-x1)*(y1*x3-x1*y3))

#

# unshift coordinate

#

x0bar=x0+x2bar

y0bar=y0+y2bar

#

# output

#

print("The minimum is at:")

print ("(",x0bar,",",y0bar,")")

#######

# EOF #

#######

5.5 Lesson 5 Answers

5.5.1 Functional Derivatives

We must differentiate

E =
∑

i

ni〈ψi|t̂ + v|ψi〉+
1

2

∫
ρ(1)ρ(2)

r1,2
d1d2− a

1

2

∫ |γ(1, 2)|2
r1,2

d1d2 + bEx[ρ] + cEc[ρ] . (5.55)

Let us do this term by term, but not necessarily in the order of terms given.
Given a functional F [f ], we recall that the definition of the functional derivative δF/δf(1) is that

δF [f ] = F [f + δ]− F [f ] =

∫
δF

δf(1)
δf(1) d1 (5.56)

for an infinitessimal but arbitrary variation δf(1). We may apply this directly to find δ/δψ∗
i (1) for

the one-electron contribution,

Et+v =
∑

i

ni〈ψi|t̂+ v|ψi〉 . (5.57)

Then,

δEt+v[ψ
∗
i ] = Et+v[ψ

∗
i + δψ∗

i ]− Et+v[ψ
∗
i ]

= ni〈δψi|t̂+ v|ψi〉

=

∫
[
ni
(
t̂+ v(1)

)
ψi(1)

]
δψ∗

i (1) d1 . (5.58)
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Hence
δEt+v
δψ∗

i (1)
= ni

(
t̂ + v(1)

)
ψi(1) . (5.59)

Let us now turn to terms involving ρ(1). For these we will need to use the chain rule,

δF

δψ∗
i (1)

=

∫
δF

δρ(2)

δρ(2)

δψ∗
i (1)

d2 . (5.60)

A tricky point is the evaluation of δρ(2)/δψ∗
i (1):

δρ = ρ[ψ∗
i (1) + δψ∗

i (1)]− ρ[ψi(1)]

= niψi(1)δψ
∗
i (1)

=

∫

(niψi(2)δ(2− 1)) δ∗i (1) d1 . (5.61)

Hence,
δρ(2)

δψ∗
i (1)

= niψi(2)δ(2− 1) , (5.62)

and

δF

δψ∗
i (1)

=

∫
δF

δρ(2)
niψi(2)δ(2− 1) d2

= ni
δF

δρ(1)
ψi(1) . (5.63)

We immediately have the derivative of the terms,

Exc[ρ] = bEx[ρ] + cEc[ρ] , (5.64)

namely

δExc[ρ]

δψ∗
i (1)

= ni

(

a
δEx[ρ]

δρ(1)
+ c

δEc[ρ]

δρ(1)

)

ψi(1)

= ni (avx[ρ](1) + cvc[ρ](1))ψi(1) . (5.65)

Let us now take the derivative of the classical Coulomb repulsion (also called the Hartree term),

EH [ρ] =
1

2

∫
ρ(1)ρ(2)

r1,2
d1d2 . (5.66)

We need δEH [ρ]/δρ(1):

EH [ρ+ δρ]−EH [ρ] =
1

2

∫
(ρ(1) + δρ(1))(ρ(2) + δρ(2))

r1,2
d1d2− 1

2

∫
ρ(1)ρ(2)

r1,2
d1d2

=
1

2

∫

δρ(1)
ρ(2)

r1,2
d1d2 +

1

2

∫
ρ(1)

r1,2
δρ(2) d1d2 +

1

2

∫
δρ(1)δρ(2)

r1,2
d1d2

=

∫
ρ(2)

r1,2
δρ(1) d1d2 + HOT , (5.67)
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where “HOT” stands for “higher order terms” (i.e., the term with δρ(1)δρ(2)) which are to be
neglected. Thus,

δEH [ρ]

δρ(1)
=

∫
ρ(2)

r1,2
d2 = vH [ρ](1) , (5.68)

the classical Coulomb (Hartree) potential. So the chain rule gives us,

δEH
δψ∗

i (1)
= nivH(1)ψi(1) . (5.69)

We are left with one last term to differentiate, namely the “Hartree-Fock” (really just the Fock
part) or “exact exchange” term,

EF [γ] = −a1
2

∫ |γ(1, 2)|2
r1,2

d1d2

= −a1
2

∫
γ(1, 2)γ(2, 1)

r1,2
d1d2 . (5.70)

Once again we need to use the chain rule,

δEF [γ]

δψ∗
i (1)

=

∫
δEF [γ]

δγ(2, 3)

δγ(2, 3)

δψ∗
i (1)

d2d3 . (5.71)

We need to find each of the two functional derivatives, δEF/δγ(2, 3) and δγ(2, 3)/δψ∗
i (1). Let us

start with the second one:

δγ(2, 3)[ψ∗
i ] = δγ(2, 3)[ψ∗

i + δψi]− γ(2, 3)[ψ∗
i ]

= ψi(2)ni (ψ
∗
i (3) + δψ∗

i (3))− ψi(2)niψ
∗
i (3)

= ψi(2)niδψ
∗
i (3)

=

∫

(ψi(2)niδ(3− 1))ψ∗
i (1) d1 . (5.72)

So,
δγ(2, 3)

δψ∗
i (1)

= ψi(2)niδ(3− 1) . (5.73)

For the first derivative,

δEF [γ] = EF [γ + δγ]−EF [γ]

= −a1
2

∫
(γ(2, 3) + δγ(2, 3)) (γ(3, 2) + δγ(3, 2))

r2,3
d2d3 + a

1

2

∫
γ(2, 3)γ(3, 2)

r1,2
d1d2

= −a1
2

∫
γ(3, 2)

r2,3
δγ(2, 3) d2d3− a

1

2

∫
γ(2, 3)

r2,3
δγ(3, 2) d2d3 + HOT

= −a
∫ ∫

γ(3, 2)

r2,3
δγ(2, 3) d2d3 + HOT . (5.74)

So,
δEF [γ]

δγ(2, 3)
= −aγ(3, 2)

r2,3
. (5.75)
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Putting it altogether gives,

δEF
δψ∗

i (1)
= −a

∫
γ(3, 2)

r2,3
ψi(2)niδ(3− 1) d2d3

= −ani
∫
γ(1, 2)

r1,2
ψi(2) d2

= aniΣ̂xψi(1) , (5.76)

where I have renamed the integral operator the exchange self energy Σ̂x = −K̂ which is equivalent
to the chemist’s exchange operator K̂ up to a sign.

We now see that,

δE

δψ∗
i (1)

= ni

(

t̂+ v(1) + vH(1)− aΣ̂x + bvx[ρ](1) + cvc[ρ](1)
)

ψi(1) . (5.77)

Thus the orbital hamiltonian,

ĥ = t̂+ v(1) + vH(1)− aΣ̂x + bvx[ρ](1) + cvc[ρ](1) , (5.78)

which is the expected result.
Finally, if the kinetic energy is approximated as it is in Thomas-Fermi theory, then nit̂ψi(1) must

be replaced by

δTTF
δψ∗

i (1)
=

∫
δTTF
δρ(2)

δρ(2)

δψ∗
i (1)

d2

= ni
δTTF
δρ(1)

ψi(1)

= ni
1

2

(
3π2
)2/3

ρ2/3(1)ψi(1)

= nivTF(1)ψi(1) , (5.79)

and ĥ is given by,

ĥ = vTF(1) + v(1) + vH(1)− aΣ̂x + bvx[ρ](1) + cvc[ρ](1) . (5.80)

We are left with an orbital eigenvalue equation,

(

vTF(1) + v(1) + vH(1)− aΣ̂x + bvx[ρ](1) + cvc[ρ](1)
)

ψi(1) = ǫiψi(1) . (5.81)

If a = 0, then we can divide out ψ(1) (where it is nonzero!) and we are left with the very strange
result that

vTF(1) + v(1) + vH(1) + bvx[ρ](1) + cvc[ρ](1) = ǫi , (5.82)

for all i which is indeed strange as (i) we have no way to determine the ψi, (ii) all the ǫi seem to
be equal, and (iii) vTF(1) + v(1) + vH(1) + bvx[ρ](1) + cvc[ρ](1) should be a constant function. The
situation can hardly be expected to improve for a 6= 0. The answer to this paradoxical situation is, of
course, that the Thomas-Fermi approximation is an orbital-free theory (i.e., justified by the original
Hohenberg-Kohn paper [159]) whose fundamental parameter is only the charge density.
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5.5.2 SCF Convergence and Forces

The convergence criterion is set to SCFTYPE RKS TOL=1.E-5. I first calculated the potential energy
curve (PEC) and its derivative over a wide range of bond lengths, just to have a look at it:

I also calculated the numerical derivative in the usual way as,

V ′(R) ≈ V (R + h)− V (R− h)

2h
. (5.83)

The graph shows that the numerical derivative and the analytical derivative agree, after changing
signs. The change of sign is needed because the output only gave the absolute value of the analytical
derivative. Hence the units of the FORCE printed in the output is really just Ha/bohr and it is a
direct derivative without, for example, any mass weighting.

We are using the program defaults. Defaults are usually set a bit too loosely so that most
calculations converge. While this makes most users happy, it is often necessary to tighten the
convergence criteria for specific applications. For now, we leave them as is and zoom in on the
minimum of the PEC:



5.5. LESSON 5 ANSWERS 157

Now we are beginning to see that the PEC is less smooth and there are wiggles in the force curve,
but it still looks as though the zero of V ′(R) is at the minimum of the V (R). But we have not yet
seen the limits of the method, so let us zoom in still further:
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The oscillations are on the order of 10−6 which is an order of magnitude less than the requested
convergence criterion 10−5. It is much easier to locate the zero of V ′(R) (which is at about 4.125
bohr) than the minimum of V (R), but with a little imagination you might think that the minimum
of V (R) is slightly displaced (towards smaller R) from the zero of V ′(R).

The program indicates an optimized geometry from roughly R = 1.04093 bohr to R = 1.4110 bohr
with some places inbetween where the geometry is not indicated as converged. This corresponds to
the geometry indicated as optimized roughly when V ′(R) < 0.0003 Ha/bohr.

Here are the results obtained with SCFTYPE RKS TOL=1.E-8:
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There are still large oscillations in V (R) for TOL=1.E-8 but there also appear to be fewer oscillations
than for TOL=1.E-5. Most importantly the numerical oscillations in V ′(R) seen for TOL=1.E-5 are
nearly invisible on the scale of the plot for TOL=1.E-8.

5.5.3 How Good a Guess Do We Need?

The initial guess R = 4.6 bohr is indeed in a region where the näıve walker algorithm described in
the lesson will converge to a minimum. However running the job indicates that it converges to a
minimum at R = 1.408724 bohr.

Some further playing with the geometry optimization parameters should yield an answer closer to
the zero of V (R) which we see is actually at R = 1.4100 bohr.
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5.6 Lesson 6 Answers

Our objective is to use DFT at the BLYP/DEF2-TZVPP level to get as close as possible to the exact
answers from Ref. [127]:

5.6.1 No Symmetry Breaking

Symmetry breaking is necessary to get properly shaped dissociation curves. Without symmetry
breaking our DFT curves are not going to dissociate correctly. However proper symmetry break-
ing is quite challenging for this system. Under the circumstances, the energy zero of the DFT
calculations has been chosen to be that of twice the BLYP/DEF2-TZVPP atomic energy, namely
2E(O) = −150.165964758 Ha. Any basis-set-superposition error has been ignored.

3Σ−
g Ground State and Fractionally-Occupied Reference State

There are two ways to calculate the 3Σ−
g PEC. One is to do a fully-relaxed UKS calculation. This is

indicated in orange on the following graph (labeled MULT 3 SHIFTED):
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The BLYP curve is clearly overbound.
The other way to calculate the 3Σ−

g PEC is to first create a reference state with equal fractional
occupation number (one half spin up and one half spin down electron in each π∗ orbital.) This is the
green dashed line on the curve (labeled MULT 1 SMEAR SHIFTED.)

We can use this reference state as a restart file to do a single iteration calculation where the orbital
occupations have been readjusted to correspond to the 3Σ−

g state. This gives the blue dashed curve
(labeled MULT 3 FROM SMEAR SHIFTED.) It is almost the same as the fully relaxed UKS result
(orange curve) but is slightly higher in energy as should be expected on the basis of the variational
principle. This blue dashed 3Σ−

g PEC will be used in our MSM calculations in order to maintain
orbital orthogonality requirements.

1∆g State

This is what is usually meant by singlet oxygen!

This is the same as the previous graph except that two new dashed-dot curves have been added. The
light blue one (labeled MULT 1 MIXED D SHIFTED) is the π∗

x[↑ ][ ↓]π∗
y reference configuration.
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This is the one listed in the MO diagram of the Wikipedia entry for the 1Σ+
g state of singlet oxygen

[160]. The excitation energy of the light blue dashed-dot curve with respect to that of the dashed
blue curve is clearly too low to be that of the 1Σ+

g state. It is even too low to be the excitation
energy of the 1∆g state. In contrast, the purple dashed-dot curve (labeled MULT 1 MULT SUM D
SHIFTED) obtained from the MSM formula,

E[ 1∆g] = 2E[|π∗
x, π̄

∗
y|]− E[|π∗

x, π
∗
y|] , (5.84)

is a reasonable description of the 1∆g PEC relative to the B3LYP 3Σ−
g PEC (even though the absolute

energy is wrong.)

1Σ+
g State

Very often the higher the excited state, the more difficult it is to get a satisfying description. However
the absolute energy of the MSM 1Σ+

g state is actually rather good. Here is a new graph, similar to
the previous graph, but some of the colors have been changed:

The purple dashed-dot line in the previous graph (labeled MULT 1 MULT SUM D SHIFT) is our
best MSM answer for the 1∆g PEC. It is represented here a red dashed line (still labeled MULT 1
MULT SUM D SHIFT.) There is a new mixed state (labeled MULT 1 MIXED S SHIFTED) which
corresponds to the configuration π∗

x[↑↓][ ]π∗
y and whose PEC is given by a light blue dashed-dotted

line. Oddly enough this is exactly the configuration that the Wikipedia [160] gives for the 1∆g state.
Cöıncidently its absolute energy is close to hat of the exact ∆

g PEC. However its BLYP excitation
energy is much closer to the BLYP 1Σ+

g excitation energy in our calculations. The final MSM 1Σ+
g

PEC is given by a purple dashed-dot line (labeled MULT 1 MULT SUM S SHIFTED) which is in
remarkably good agreement with the exact 1Σ+

g PEC curve.

5.6.2 With Symmetry Breaking

3Σ−
g Ground State

Following the procedure given in the lesson gives
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The general shape of the BLYP PEC is correct but it dissociates to a higher energy than twice
the energy of two oxygen atoms, suggesting that further symmetry breaking might be possible. (Or
perhaps this is simply the best that can be done without resorting to a multideterminantal approach?)
It is also clear that BLYP overbinds the molecule. As in the case of H2, there is a bond distance
beyond which spin contamination sets in:

π∗
x[ ][↑↓]πy∗ Reference State

This was obtained with MULTI 1 and a restart from the triplet:



164 CHAPTER 5. ANSWERS

There are some problems in the shape of the curve noted between 3.7 bohr and 4.1 bohr. R = 3.7 bohr
was where spin contamination set in for the triplet state. We may also calculate spin contamination
for the MULTI 1 reference state:

〈Ŝ2〉 = S(S + 1) should be zero for a singlet and two for a triplet. The value of 〈Ŝ2〉 is constant
up to the same bond length where spin contamination set in for the triplet state. It then seems to
converge to a triplet state at very large values of R.

1∆g and 1Σ+
g States

The dashed lines are the BLYP MSM approximation to the accurate curves of the same color.
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5.6.3 Conclusion

The two calculations above (symmetry unbroken and with symmetry breaking) give very similar
results in the region where no symmetry breaking occurs even though different reference states have
been used in the two cases. This is reassuring. However the MSM method breaks down badly for
describing excited states once symmetry breaking occurs. There are several reasons this could happen
including the possibility of more than one way to break symmetry and the problem of identifying spin
↑ and spin ↓ orbitals once symmetry breaking has occurred. However the most important difficulty
and the most important reason to avoid symmetry breaking when treating excited states is that it
is nearly impossible to construct excited states with well-defined symmetries unless the molecular
orbitals belong to well-defined irreducible representations of the molecular point group, which is
certainly not the case in broken-symmetry calculations.
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Appendix A

Installing Linux on a Mac Notebook

Figure A.1: Nabila Oozeer (shown here enjoying the culinary pleasures of Barcelona) did a stage de
L3 chimie physique with MEC in January 2022. This appendix is one result of her stage.

This appendix is based upon work done by Nabila Oozeer (Fig. A.1) during a short research
internship in 2022. The object of this stage was to test the reaction of a third-year University
undergraduate to this workbook. We decided that she would work with deMon2k on her Macintosh
(Mac) Notebook computer. However the Mac Notebook uses the Mac operating system and not
Linux. So Nabila first installed Oracle’s VirtualBox [161] which allows multiple operating systems
to be run on the same computer and then she installed the Ubuntu version of Linux. What follows
are Nabila’s detailed instructions for duplicating her installation:

A.1 Step 1: VirtualBox Installation

VirtualBox allows you to run multiple operating systems (OSs) at the same time.

167
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1. Go to //www.virtualbox.org/.

2. Click on Download Virtualbox 6.1 (big blue button). You will be redirected to the “Down-
loads” section of the website.

3. Click on the type of OS of your computer (e.g., click on “OX hosts” if you have a Macbook or
on “Windows hosts” if your computer runs on Windows). A pop-up might appear here if you
have a Macbook requiring you to authorize the download. If so, then go to System Preferences

→ Security and Preferences → Allow apps downloaded from Oracle America and save
changes.

4. Now that the file has been downloaded, open the VirtualBox file and click on install.

You may now to go the Launchpad and open VirtualBox.

A.2 Step 2: Linux Installation

Nabila decided to install Ubuntu but you can install another flavor of Linux (such as Mint).

1. Go to https://ubuntu.com/#download. Click on Ubuntu Desktop 20.04 LTS.

2. The file is now downloaded as ubuntu 20.04.3-...iso.

A.3 Step 3: Creation of a Virtual Machine

Go to VirtualBox and open a new window. It should look something like this:
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1. Click on New (top left corner).

2. Give the file a name (such as ubuntu20.04). Note the file destination so that you will be able
to locate it later on.

3. Click on Continue.

4. Select the amount of RAM (i.e., random access memory) that you want to allocate for the
virtual machine (2 GB of RAM is recommended but you can change this later on).

5. Go to Hard Disk→ Create → VDI (Virtual box disk image)→ Dynamically allocated.
(The latter option allocates memory as needed. In contrast, the Fixed size option allocates
all the memory at the beginning.)

6. File size → 50 GB. (You can choose more if you want to but 50 GB is fine for running
Ubuntu with deMon2k.) Note that this disk size cannot be changed.

7. Create.

If all goes well, Ubuntu 20.04 has now been created. Before starting it up, we will click on the
Settings button to check on a few things.

This menu will appear:
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1. Go to System. First we have the Motherboard tab. This is where the RAM may be changed.
Next there is the Processor tab. This is where more of the CPUs may be allocated to the
virtual machine. (For our purpose, one CPU is enough. However, if the machine is performing
poorly, we may need to add more processors to it.)

2. Go to Display. The Screen tab opens. The Video Memory should be set to its maximum
value.

3. We can now click OK and then the Start button.

4. A menu asking you to insert the installation file will pop up:

5. Click on the folder icon.

We will now insert the ubuntu.iso file that we initially downloaded from the Ubuntu website. A
menu will appear.

1. Click on the Add icon.

2. Locate your iso file and open it.

3. The file will appear on the menu. Select the file and hit choose.

4. Click on the Start button. This means that the Ubuntu installation is booted up.

5. A welcome screen appears.
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6. Choose your preferred language and click on Install Ubuntu.

7. Choose your desired keyboard layout.

8. Make sure to choose Normal Installation; this step gives you a full version of Ubuntu.

9. Click Continue.

The next step regards the installation type.

1. Click on Erase disk and install Ubuntu. (Note that this step will not actually erase your
disk!!)

2. Hit the Install button.

3. Create an account

Ubuntu is now installed.

Once the installation is complete, then you should click on Restart now.

You may now connect to your online accounts.
To get the most of your Ubuntu experience, you will need to install the Ubuntu guest edition.

This improves the screen resolution and allows you to use Ubuntu in full-screen mode. (Nabila
reports that it took her a few hours until she figured out why she could not use Ubuntu in full-
screen mode.)

1. Go on the menu bar on the Mac and on the top left corner of the screen hit Devices → Insert

Guest Additions CD Image.

2. A pop up will appear and click on run.

3. A terminal showing the installation of the guest addition will appear.

4. When the terminal is done, restart Ubuntu.

Enjoy your virtual operating system!
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